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Abstract—The recent growth of applications in the emerging
Internet of Things field is posing new challenges in the long-term
deployments of sensing devices. Currently, system designers rely
on energy harvesting to reduce battery size and extend system
lifetime. While some system functions need constant power
supply, others can have their service adapted dynamically to the
available harvested energy and harvesting power. Our proposed
Torpor is a power-aware hardware scheduler which continuously
monitors harvesting power and in combination with its software
runtime, dynamically activates system functions depending on
the available energy and its rate of change. By performing a
few key functions in hardware, Torpor incurs a very low power
overhead during continuous monitoring, while the software
runtime provides a high degree of flexibility to enable different
scheduling policies. We implemented Torpor on a FPGA-based
prototype and demonstrated that dynamic scheduling policies
which take the harvesting power into account can have a 2× or
more improvement in execution rates compared to static (input-
power-independent) policies, while dynamic policies that are
aware also of the system’s power consumption can achieve 1.5×
improvement in the execution rates compared to the ones that
do not. The power consumption of Torpor’s always-on hardware
integrated on chip is estimated to be less than 4 µW, making it a
very promising power-management add-on for microprocessors
used in IoT nodes.

I. INTRODUCTION

In recent years, energy harvesting has been explored as a
promising lifetime extension option for wireless sensor nodes.
Compared to battery-only designs, energy harvesting nodes
require less energy storage capacity for continuous, long-term
operation. Energy harvesting, however, can be subject to great
variability [1]. In the most extreme case, this can mean no
energy is harvested for long periods of time. To cope with
harvesting variability, the system’s service is typically reduced
as the available energy decreases [2]. Certain applications,
however, require an always-on domain for specific tasks which
are fundamentally incompatible with service degradation. One
example is a sensing system that needs to continuously record
data but can defer the processing and transmission of the
recorded data for periods of high energy availability.

When an energy source exhibits periodic behavior, e.g.
outdoor solar [3] or thermal [4], designers can optimize
their design for continuous, energy-neutral operation. This is
achieved by dimensioning the battery to supply energy for at
most one period since it is the worst-case unavailability of a
periodic source. When the energy source has no regularity or
cannot be gauged at design time, this methodology inevitably
falls back to over-dimensioned, battery-based design.

For this reason, there has been a recent trend towards
batteryless, or transient systems [5], [6]. These systems are
entirely energy-driven: they can operate only when harvested
energy is available —whenever that may be. To use this
harvested energy efficiently, task energies must be known and
operation must be duty-cycled [7]. This can limit the system’s
supported tasks as transition costs, between active and sleep
states, must be low. While these devices minimize cost (no ex-
pensive battery needed), they cannot support always-on tasks
unless the environment guarantees energy continuity, which is
hardly ever the case [8]. Because of this limitation present
in all harvesting-based systems, we divide our application
into (i) ultra-low-power guaranteed minimum service and (ii)
opportunistic high-power service. A conventional harvester-
battery approach, shown in fig. 1A, would require the battery
and the power subsystem to be dimensioned for the worst-case
conditions. Because both low and high power services have the
same source, system parameters will be dominated by high
power tasks, leading to excessively high costs. We propose a
different topology, shown in shown in fig. 1B, that supplies
high power tasks differently from always-on low power tasks.
High power tasks are supplied using a harvester and a high-
current capacitive energy buffer, while a primary battery is
used exclusively to guarantee the continuity of low power
tasks.
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Fig. 1. A) Traditional harvesting-based nodes combine harvested with stored
energy. B) Torpor-based nodes switch between battery and harvesting powered
operating modes.

In our previous work [9], we introduced Torpor, shown
in fig. 1B, that efficiently combines energy harvesting and
primary energy storage for long-term operation with service
guarantees. Whenever the harvester cannot sustain the load,
the system is powered by primary battery and can thus
provide guarantees for low-power, always-on tasks. When the
harvester produces enough energy to sustain the load, the
system switches to harvesting-powered mode and additional
high-power tasks can be opportunistically supplied from cheap
harvested energy. To use harvested energy efficiently, the
system needs to monitor its input power and maintain a bal-
ance with the load’s power consumption through scheduling.



To this end, we develop a low-overhead HW scheduler that
can support different types scheduling strategies, based on
different application-specific parameters. In highly variable
harvesting scenarios, we show that introducing task energies
into a dynamic scheduling policy can double the execution
rate of high-power energy-driven tasks compared to a static
policy, while still guaranteeing continuity of always-on tasks.

Applications using multiple peripherals can have highly
different power consumption depending on the task being
executed. As such, an energy oriented scheduling policy might
select a task whose power consumption is below the harvested
power. In this scenario, the energy buffer will quickly saturate,
prevent additional available energy from being harvested and
therefore decrease the system’s energy efficiency.

In this work, we propose an additional dynamic scheduling
policy based on one additional application parameter: the
power consumed by the load during each task. When doing
so, Torpor is using this additional information so that the
load’s power consumption can more closely match that of
the harvester. By minimizing the time intervals where the
harvested power exceeds the energy-driven tasks’ power con-
sumption, we minimize the chance of energy buffer saturation
and as a result maximize the harvested energy. We show
experimentally that, in certain scenarios, this power-oriented
dynamic scheduling policy can achieve 1.5 times the execution
rate of energy-oriented dynamic policies.

For either energy-oriented or power-oriented scheduling
policies to work, the system designer has to know and provide
the values of required energy and power for each task. To
achieve this, one approach calls for theoretical calculations,
which often find their assumed models inadequate to match
the reality, while another approach follows a labor-intensive
trial-and-error process of practical measurements. Having a
procedure that helps designers pre-characterize their tasks’
energy and power demands becomes essential for the system’s
operation and another novel contribution of this work is the
Automatic Task Characterization, which delivers this function-
ality by using an external source, before deployment.

In summary, the contributions of Torpor are the following:

• A system architecture that efficiently combines guaran-
teed always-on functionality with energy-driven tasks.

• A configurable HW unit that continuously monitors
harvested energy availability, exposing to the SW a
priorities-mechanism that enables both static and dynamic
scheduling policies for energy-driven tasks.

• An automatic procedure to characterize the tasks in terms
of their energy and power needs.

• The implementation of an energy-oriented dynamic
scheduling policy that improves task execution rates by
2× compared to static policies under variable harvesting
conditions.

• The implementation of a power-oriented dynamic
scheduling policy that improves task execution rates by
1.5× compared to the energies-oriented under harvesting
conditions where the energy buffer may saturate due to

short intervals of harvesting power potentially larger than
the load’s consumption.

• A complete system prototype where Torpor is imple-
mented in a FPGA for verification.

• An extensive experimental evaluation, comparing the
performance of static and dynamic scheduling policies.

The remainder of this paper is structured as follows: sec-
tion II covers existing works in related fields and section III
introduces basic concepts of transiently-powered systems that
are important for Torpor. After that, section IV presents the
high-level architecture of our proposed system, while sec-
tion V focuses on our physical implementation. On section VI
we discuss in detail our evaluation of both the simulated HW
unit and the FPGA prototype. Finally, section VII concludes
our work.

II. RELATED WORK

Wireless sensor and actuator systems have been designed to
be battery-powered for many decades [10]. In certain specific
applications, like implantable devices [11], they will remain
battery-powered for many years in the foreseeable future. In
many other, typically outdoor scenarios, energy harvesting
has been successfully introduced to reduce costs and extend
battery lifetimes. Interested readers can find a survey of
energy harvester taxonomies and prediction models [12]. Let
us assume that a system has a harvester and an initially charged
energy storage connected in series. If we break down the
energy consumed by the system during its lifetime, there are
basically two possibilities:

1) Storage-dominated energy flow: If the majority of the
load’s energy originates from the (initially charged) storage
device, it will dominate the system lifetime. This can happen
when the harvesting power is significantly smaller than load
power. There is so little uncertainty that it is easy, albeit
costly, to guarantee long lifetimes at design time. Classical
design techniques for these systems include dynamic power
management [13], [14], and low power design [15], [16].

2) Harvesting-dominated energy flow: If the storage device
cannot supply the load by itself, the system can be considered
to be transient or completely harvesting-driven. These systems
can either be designed for reliable or greedy operation. In the
former, the storage can be dimensioned either for a single
application iteration [5] or a single task [17]. Other approaches
have been proposed to address the inherent energy variability
in tasks executed by sensing devices. In [18], for example, a
federated approach to energy storage is proposed, separating
the energy supply of different components into different capac-
itors. Capybara [19], is a reconfigurable energy storage archi-
tecture that efficiently addresses the variable energy demands
of sensing applications. Sometimes the energy storage is so
small that tasks cannot be executed atomically, thus requiring
state retention techniques [6], [20] to avoid data consistency
issues caused by intermittent execution. Some systems manage
to increase their efficiency by becoming adaptive to the source
and load dynamics and autonomously characterizing their



hardware platform [21]. Though transient systems are cost-
effective and can operate in an energy efficient manner, they
cannot guarantee continuous operation with volatile sources.
By contrast, if the storage device is large enough to “filter
out” the source’s energy variability, continuous operation can
be sustained. In fact, given enough information about the
environment, even real-time guarantees can be made [22].
However, these systems require a high-energy, periodic source
(i.e. the sun) to keep the harvester and storage element cost
effective [23]. Interested readers can find an overview of the
circuit, architecture and system design considerations in [24].
One way to mitigate the effects of a source’s variability is
to harvest energy from multiple sources. Multi-harvesting is
an effective way to increase the energy availability, but it has
multiple trade-offs in terms of efficiency, applicability, and
ease of deployment [25]. Even with multi-harvesting, however,
these systems need advanced power management techniques
[26] with state-of-charge estimation [27] to adapt the system’s
service [28].

In this work, we introduce Torpor, a hybrid approach that
combines the benefits of both: low costs of harvesting-based
secondary cell whenever it is available, and a primary cell for
a guaranteed, worst-case lifetime. To maximize the energy ef-
ficiency during harvesting-driven operation, we propose novel
dynamic scheduling algorithms, which can be executed in
hardware with little overhead. For the purposes of simplicity,
we will focus on sequential sense-process-transmit on a single
core platform. Using memory buffers, we can use functional-
level parallelism, for example, to execute multiple sense tasks
before the first process task is called. This simple execution
model is enough for Torpor to demonstrate significant im-
provement in overall execution rates. The proposed schedulers
require application-specific parameters such as the energy and
power consumption of each task. Torpor assists developers in
experimentally determining these values by using a dedicated
power channel for characterization purposes. Those schedul-
ing algorithms will be evaluated against the static schemes
proposed in [5] and [17].

III. PRELIMINARIES

Typically, IoT applications executed in Wireless Sensor
Nodes (WSN) can be seen as a sequence of tasks beginning
with sensing some environmental information, processing it in
a number of steps and finally transmitting the results to a base
station. We consider applications with two types of tasks: 1)
always-on tasks which have, on average, constant low-power
but require continuity and 2) energy-driven tasks which can be
high-power but are also deferrable. We consider applications
that have always-on tasks running in the background and a
chain of N energy-driven tasks with data buffers in-between.
As each task may require data produced by the previous task
in chain and produce results needed for the next task, these
dependencies must always be observed. Each energy-driven
task has its own duration and power consumption, and for
simplicity, we restrict them to atomic execution.

Supporting applications with always-on and energy-driven
tasks requires managing different types of energy sources. Pri-
mary batteries can easily guarantee the continuity of always-
on tasks for a specified lifetime. Harvesters can supply high-
power, energy-driven tasks with cheap energy. Torpor switches
between these two sources depending on the availability of
harvesting power, as shown in fig. 2.
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Fig. 2. When there is no harvesting power (Ph = 0), Torpor supplies always-
on tasks with battery power. As harvesting power becomes available, Torpor
uses burst-generation schemes for power-hungry, energy-driven tasks.

A. Battery-driven mode

The system enters this mode of operation whenever the
harvester produces energy at an insufficient rate. Similar to the
biological state of torpor, the system is in a state of decreased
activity, limiting itself to running always-on tasks. Their
continuity is guaranteed by the battery, which has been sized
to guarantee a specified worst-case lifetime. Since always-on
tasks are meant to be low power (in the µW range), multi-year
operation can be easily reached with a small primary cell.

B. Harvesting-driven mode

The execution of energy-driven tasks is supplied, as the
name implies, solely by harvesting power. During this time the
primary battery is switched out, thus prolonging its lifetime.
To enter this mode, it is necessary that the harvesting power
(Ph) be larger than the load’s always-on power (Palways on).
If this condition is met, we can utilize the burst generation
schemes presented in [5], [17]. Otherwise, the harvested power
cannot be utilized by the load wihout additional circuitry to
manage a secondary battery for storing energy harvested in
these low power levels. These additional costs outweigh any
benefits from operating in the PH < Palways on region. Burst-
generation schemes can work with low input power, in the µW
range, and still supply power-hungry energy-driven tasks in
the hundreds of mW range. This is achieved by accumulating
the energy necessary for only one activation. The energy is
buffered in a small capacitor, and its consumption due to a
load activation is referred to as an energy burst.

Since there are many possible scheduling policies to deter-
mine when the load should start a burst and how big it should



be, any scheduler implemented in HW should be configurable
to support this.

C. Burst Scheduling Policies

The simplest scheduling policy is to accumulate enough
energy to execute all energy-driven tasks together in a single
energy burst of size Ebuff = Eapp. This policy will be referred
to as single burst, similar to the approach presented in [5].
Single burst schedules are simple and could be implemented
by a single comparator reading the capacitor voltage Vbuff. But
waiting always for a high capacitor voltage can be inefficient
since the load discharge power will increase as the voltage
increases.

Another approach is to split the application into multiple
bursts. As such, each individual task is executed as soon as
there is enough energy to execute it. As first proposed in [17],
the order in which the individual tasks are executed is static
and defined at compile time. While split execution requires
less buffered energy than single burst, they are both static
scheduling techniques.

Independent of the scheduling policy, the buffering capacitor
charges or discharges, with rate:

dEbuff(t)

dt
= Ph(t)− Pload(Si)− P̄Torpor (1)

where Pload is power consumed by the load, Si is the system
state and P̄Torpor is the average power consumed by Torpor.
The system state reflects what the load is executing, whether
always-on functions only or also energy-driven tasks. The state
is updated by the scheduler, when it makes a decision to trigger
a new energy-driven task, or when a task is completed.

We are referring to static scheduling policies when the order
of energy-driven task execution is always the same. If there is
only one possible decision, as is the case in the single burst
approach, then the only variable will be when the application
is executed, which depends only on Ebuff. This approach was
first introduced in [5]. When an application requires multiple
bursts or activations, the scheduler also needs to know the
application state, e.g. buffer states and task dependencies, to
determine which task to execute next. For example, a FIFO
scheduler will execute a chain of tasks one by one, always in
the same order. This approach was first proposed in [17].

We argue that static schedules may still lead to inefficient
use of the harvesting power when this exhibits highly variable
behavior.

Dynamic scheduling policies can execute a chain of tasks
in a different order, depending on one or more parameters.
As we have seen, the harvesting power determines the rate
of increase of Ebuff(t) and consequently the time the system
will need in order to accumulate enough energy to execute its
next energy-driven task. When the harvesting power is low, the
accumulated energy may remain relatively flat for prolonged
periods or even be gradually lost due to leakage and the load’s
base power consumption. This phenomenon which will have
an important effect on system metrics such as execution rate
and overall energy efficiency.

For this reason, input-power-awareness is an essential pa-
rameter for any dynamic scheduling policy. On the application
side, a dynamic scheduling policy needs to be able to re-
arrange the order of execution (otherwise it will be a static
schedule). To do this, the system has to be able to store
the result data tokens of each executed task in memory
buffers and ensure that tasks are executed only as long as
their required input data tokens are available and there is
enough space in their output data token buffer. When there
are many (possibly all) tasks available, different policies can
prioritize the execution of tasks based on either the largest
energy requirement, the highest power consumption, the task’s
position in the task-chain or any other metric. In our previous
work [9], we demonstrated how an energy-oriented policy
improved the energy efficiency and application execution rate.
We will now introduce a novel power-oriented policy which
will improve system behavior even further. When each task’s
power is available as information, Torpor is able to avoid the
energy buffer’s saturation in a much wider harvesting power
range and a much broader set of possible task-sets.

IV. SYSTEM ARCHITECTURE

A. Top-Level Architecture

The top-level system architecture of a proposed Wireless
Sensor Node (WSN) with Torpor is depicted in fig. 3. Two
power sources, a battery and a harvester, (e.g. a solar cell
or an electro-mechanical generator), are available to supply
the node’s load. The load contains the node’s system-on-chip
(SoC) to run the application as well as external peripherals to
interact with the outside world (e.g. sensors, radio).
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Fig. 3. Top-Level Architecture: An overview of the blocks present in a WSN
that uses Torpor. A control logic manages the state of the Load, which is
either powered by harvested energy or by battery. (*) The external power
source is only used for characterization before WSN deployment.

B. Torpor Functions

As proposed earlier, Torpor distinguishes between periods
of no harvested energy, where always-on tasks are guaranteed
to run with a battery, and periods of energy harvesting, where
all tasks (always-on and energy-driven tasks) can be supplied
with harvesting power. To support this operation, Torpor must
provide the following functions:

• A switch-over mechanism between the battery-supply and
harvester power source.



• A mechanism which ensures that energy-driven tasks
run reliably. This means buffering sufficient energy to
complete a task after starting it.

• The scheduling capability to decide what, if any, energy-
driven task should be launched based on the buffered
energy Ebuff(t) the input power Ph(t), according to
priorities that reflect the task energy and power demands
and the task availability due to the software application
state.

• The required always-on monitoring capabilities to esti-
mate Ebuff(t) and Ph(t).

• An easy-to-use interface to the application developer that
can characterize the task energies and powers.

C. Torpor Architecture

Torpor should support various applications and be con-
figurable. Additionally the implementation of Torpor must
consume very little power and introduce negligible energy
overheads - ideally, the added power cost should be much
smaller than what is consumed by the always-on tasks. For
this reason, Torpor’s implementation is split in a Torpor-
HW part and a Torpor-Software-Runtime, running on the
SoC’s processor. This split makes the solution configurable,
extensible and user-friendly without inflating the hardware and
keeps the power consumption of Torpor’s HW low.

1) Torpor-Software-Runtime: The runtime allows the user
to specify tasks and make use of a scheduler with a priority
mapping function. This function, depending on the application
state, specifies which tasks are executable and assigns an
execution priority. The runtime then abstracts this scheduling
information (scheduler strategy, task executability and priority)
and passes it to the HW.

The actual scheduling decision is then done by the control
logic in Torpor-HW while the processor can go to Idle state.
Every time the HW makes a decision, it wakes the proces-
sor’s core up and notifies the Runtime, which then launches
the energy-driven task and updates the abstracted scheduling
information in HW.

2) Torpor-HW: The hardware part of Torpor does not
only perform the scheduling decision, but also provides the
required hardware components to supply energy to the load in
a controlled manner. Moreover, it provides the monitoring of
Ebuff(t) and Ph(t) to enable dynamic power-aware scheduling.
The Torpor-HW (fig. 3) consists of the following blocks:

• An energy controller, that uses harvesting power to buffer
energy and delivers it at the load’s operating voltage.

• A power switch and a battery to ensure that the load has
enough power to perform its always-on tasks even when
there is not enough harvested energy available.

• An ADC that measures Vbuff(t)and estimates Ebuff(t) and
Ph(t).

• A characterization power switch used by Torpor to switch
over to an external power source. This is used before the
deployment of the WSN to automatically measure the
required energy of the application tasks (see section V-D).

• The Torpor control logic that performs the actual schedul-
ing decision based on the ADC values and decides when
and what energy-driven task is executed.

V. TORPOR IMPLEMENTATION

To achieve maximal design density and cost efficiency,
it would be desirable to integrate the entire Torpor-HW on
the WSN SoC. However, the Torpor-HW contains several
power-electronic blocks which are not easy to co-integrate
in advanced technology nodes. Therefore we propose to keep
most of the Torpor-HW external and implement it with discrete
components – except the ADC and control logic (purple in
fig. 3), which we suggest to be integrated in the SoC. This
avoids I/O power dissipation for the communication between
the control logic and runtime running on the SoC. Addition-
ally, the proposed external part of Torpor is mainly powered
by harvesting power, so its consumption is less critical.

To verify Torpor in a real-world scenario we implemented
a complete system prototype as a proof of concept. We did
not fabricate the SoC with integrated Torpor logic, but we
built the system with discrete components and emulated the
control logic on a low-power FPGA. Our prototype is based
on a solar-powered WSN equipped with a microcontroller
(LPC54102, NXP) and the control logic implemented on a
low-power FPGA (IGLOO nano, Microsemi).

A. Torpor-Software-Runtime
The Runtime running in the LPC core provides the main

execution loop of the system, which is illustrated in fig. 4.
After the initial boot, the application’s tasks are declared with
the API provided by Runtime: a maximum of 8 tasks in
a chain are assumed, where each task is represented by a
function that may require result item(s) from the previous
task and provide a number of result items to the next task.
The transfer of the result items is done using FIFO circular
buffers provided by the API with configurable length. The
energy required for each task to execute is communicated
by setting the minimum buffered voltage threshold needed.
A scheduling policy is selected, by providing a function that
assigns priorities to the task according to their position in the
chain, their energy thresholds, power needs (if available), the
data buffer states and a scheduling strategy. The available tasks
for execution are marked accordingly. Then, the main loop
is started. First, the task priorities are calculated for the first
time. The hardware is configured accordingly (with the desired
ADC sampling and filtering rates, the input power threshold
and integration settings) and the system then enters its low-
power Idle state, where only its always-on functions are active.
The hardware is monitoring the Vbuff and takes the system out
of its Idle state when a energy-driven task is to be executed, by
using an interrupt signal. The Runtime then reads the chosen
task and executes it, updates the priorities, passes them to the
hardware, signals its activation and goes again to its Idle state.

B. Torpor-HW
The Energy Controller consists of a boost converter, an

energy storage element and a buck converter (see fig. 3).
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Fig. 4. Simplified state diagram of Torpor’s Software-Runtime. Following
the initial configuration, the Software-Runtime updates on every iteration the
task priorities and waits on its idle state until the HW signals a task to be
executed.

When the transducer produces energy, an ultra low-power
boost charger for harvesting application (BQ25505, TI) is used
to charge a 330µF ceramic capacitor1. An ultra low-power
step-down buck converter (TPS62740, TI) delivers the energy
stored in the capacitor to the load at the required voltage
(1.8 V). This step-up and step-down topology is commonly
found in micro-energy harvesting systems [29], [5], [30]
since decoupling allows simultaneous maximum power point
tracking (MPPT) on the transducer side and minimum power
point tracking on the load.

The Battery Switch (TPS3610, TI) automatically switches
the load’s power source to the Battery when low harvesting
power input causes Vload to drop below a threshold. The
switch has a low on-resistance of 0.6 Ω and thus introduces a
negligible loss.

The Torpor control logic and the ADC as depicted in
fig. 5 are to be integrated in the node’s SoC. This logic is
always-on, monitors Vbuff and signals to the core when to
execute which task. In our prototype, an external ultra low-
power ADC component (ADS7040, TI) is used and the control
logic is implemented in a low power FPGA (IGLOO nano,
Microsemi). The FPGA connects to the ADC and the SoC over
two separate Serial Peripheral Interfaces (SPI). Over the SPI
interface the SoC core can set Torpor’s configuration registers
and read the status registers. An IRQ line allows Torpor to
trigger the core to execute an energy-driven task.

As part of the control logic a block called Sampling Unit
manages the interfacing with the ADC. It allows to sample
Vbuff with a configurable sampling rate, filters those samples
and estimates the input power Ph(t) from their rate of change.

The control logic provides 8 abstract task slots, which are
ordered in descending priority and configured by the Runtime.
For each task slot, the corresponding task energy execution
threshold (Vthres,i) is stored in a configuration register. The
thresholds are expressed in voltage to be directly comparable
to the ADC samples. A bit-mask (Execution Mask), stored in a
configuration register, marks which slots are active. The mask
is set by the Runtime depending on the application state to
indicate which energy-driven tasks are currently available for
execution.

This information, i.e. the threshold comparison results
masked by the execution mask and the Ph(t) estimate, is
fed to the control logic’s Finite State Machine (FSM). The
FSM checks if the highest-priority task can be executed or
alternatively, when the input power Ph(t) drops below a

1The size of the capacitor was chosen to provide sufficient energy storage
for the most energy-intensive energy-driven task we evaluated.

configurable threshold, if any other lower-priority task could
be launched instead. When the FSM comes to a decision, it
writes the slot ID of the task to launch in a status register and
sends an interrupt to the microcontroller.
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Fig. 5. Simplified block diagram of the HW logic to be integrated.

C. Scheduling Policy Implementation

As explained, Torpor’s control logic allows implementing
different scheduling policies by configuring the Runtime ac-
cordingly. To implement a scheduling policy we need to define
a priority mapping function, that determines when the HW is
going to notify the Runtime to execute a task. As long as
the Ph(t) is above the set threshold, the HW will wait until
the highest priority task can be executed, otherwise it will wait
until any task can be executed, pick the most prioritized among
them and report it back to the Runtime. Tasks that must not be
executed due to software dependencies are masked out using
the appropriate register.

The abstract task slots of the control logic allow the
execution of either one or more tasks per burst. In order
to implement conventional static single burst scheduling, the
Runtime can merge all tasks in a single abstract task and
configure the control logic accordingly to simply notify the
Runtime when this one abstract task can be executed.

In order to implement the static split scheduling, the Run-
time will keep all tasks declared separately. The task priorities
in this case are not relevant, as each time the Runtime will
always mark only one task (the next in chain) as executable
and mask-out the rest. This way the Runtime dictates com-
pletely the order of execution (static) and the HW will wake
the system’s core up each time the appropriate execution
thresholds are reached.

On our first proposed dynamic scheduling policy (Energy-
oriented) we follow a simple strategy to maximize the through-
put of the application and favor the largest in energy tasks. We
program the priority mapping function to assign the highest
priority to the task closest to the end of the chain, while
considering the eligibility of the task depending on the FIFO
fill states. This decision favors throughput as it prefers to keeps
FIFO fill states low. The Runtime will assign this task to



the first (highest priority) abstract task slot T1 in the HW
control logic The rest of the tasks are prioritized according
to their energy requirements, with the mapping favoring the
more demanding ones. This way, when the input power is low
Ph(t) ≤ Ph,high, the scheduler tries to launch any task possible
to minimize energy losses by using the most of the available
energy for whatever it can be used. To do so, the scheduler
first checks which tasks can be run (enough energy and mask
bit) and then launches the one with highest priority.

Our second proposed dynamic scheduling policy will be the
Power-oriented one. Here, we program the priority mapping
function to assign the highest priority to the task with the
highest power demands and this is the one placed on the
T1 slot of the HW control logic. This way, periods of high
input power will be matched to our system’s most power-
demanding functions. The rest of the tasks are prioritized
from the lowest to the highest powers, so that when the input
power is low, low-power tasks are favored whenever possible.
Again, only tasks that can be executed based on their software
dependencies are left unmasked.

D. Task Characterization

To ensure that energy-driven tasks run reliably, Torpor
checks if there is sufficient buffered energy to execute a task
before scheduling this task for execution. In order to do this,
all task energies need to be known. This information could
be obtained through manual trial-and-error engineering or by
complex energy estimations, one being time-consuming and
the other potentially inaccurate or overly pessimistic. As an
example, a sample CNN application[31] developed for our
same microcontroller is composed of more than 5000 tasks,
which is beyond the reach of manual labor. To alleviate
this effort, Torpor provides an automatic task characterization
feature to determine the required values. While we generally
assume and observe that the energy consumption of individual
tasks such as sensing and transmitting exhibit little variation,
we do note that the absolute energy consumption per task
depends heavily on the peripherals being used. These values
are essential for the minimization of the storage element,
such that task atomicity can be guaranteed. In processing
tasks, there can be some variability depending on the type
of application, but in most cases a worst-case execution can
be artificially enabled during characterization to ensure that
worst-case energy consumption figures are obtained, which
are required for reliable operation.

During automatic task characterization, each task is charac-
terized sequentially. To do so, as depicted in fig. 3, an external
power source is connected to the energy controller through
a controllable power switch. First, a large test capacitor is
charged to its maximum, Vmax, then the input power is cut
off and the task to be characterized is executed. When the
task is completed, the remaining voltage across the buffering
capacitor Vmeas,i is measured.

Repeating the procedure with smaller capacitors will reach
the minimum functional capacity and each time the procedure

is carried out a pre-configured number of times to average the
estimate.

While we can estimate the consumed energy by the task
with

Ẽtask,i =
1

2
C · V 2

max −
1

2
C · V 2

meas,i , (2)

ultimately, the HW logic needs the corresponding voltage
threshold Vthres,i to compare to the current Vbuff(t) in order
to determine whether sufficient energy is available to execute
a task. As an additional constraint, during task execution,
Vbuff may not fall below the set output voltage Vload of the
buck converter in the energy controller. Otherwise, the battery
switch will jump in and the load will start draining the battery.
To prevent this, we compute the threshold in a way such that
a minimal residual voltage Vmin is guaranteed to be present on
Vbuff after task execution.

Given these constraints, we set the voltage threshold to

Vthres,i =
√
V 2

max − V 2
meas,i + V 2

min . (3)

The voltage-dependent buck-converter efficiency makes the
energy consumed by the task largest when the execution begins
on higher Vbuff, which makes the threshold calculated by
this procedure a worst-case estimation. If desired, by adding
some additional margin to Vmin, higher safety margins can be
taken into account. Finally, the voltage thresholds are stored
within Torpor’s always-on domain to access them with low
energy overhead. The task’s execution duration Ttask,i is at the
same time being measured by a hardware timer on the LPC
processor, appropriately scaled. This enables the calculation
of an estimated average task power consumption

P̃task,i =
Ẽtask,i

Ttask,i
, (4)

which gives the scheduling policies one more metric to
potentially base their decisions upon. As it will be shown
in section VI, this can be a vital factor in scenarios where
the input power may surpass for short intervals the power
consumed by the system during the execution of some of its
tasks.

VI. EVALUATION

With Torpor we propose to add additional hardware com-
ponents to the WSN in order to increase its overall energy
efficiency. In this section, we will evaluate what can be
gained with Torpor in terms of power efficiency and what the
overhead is for the added functionality.

First, we will evaluate the power consumption of the always-
on parts of Torpor. For this evaluation, we will investigate
the final target implementation with the control logic and
ADC co-integrated on the SoC as proposed in section V. The
overhead introduced by the Torpor software runtime will be
also addressed, both in terms of its size and time overhead.
Afterwards, we will experimentally verify and evaluate Torpor
on our FPGA-based prototype and quantify the achieved gains.
The node will be powered with a solar panel placed in a
controlled lighting environment for reproducible experiments.



A. Power and Software Overhead

1) Estimation of Torpor’s Power Consumption: For this
estimation, we consider only the parts of Torpor that can
be powered from the battery. These are the integrated parts
(control logic, ADC) and the power switch. The power con-
sumption of the booster and buck converter were omitted as
they are powered only by harvested energy and their overhead
will be considered when computing the achieved gains.

The implemented Torpor hardware control logic was syn-
thesized in a 22 nm FDX technology (0.65 V, TT, 25 C) and
its power consumption was estimated in PrimeTime using
activity vectors derived from ModelSim. The logic requires
1700 µm2 of area and consumes 1.57-1.96 µW depending on
the activity. The operating frequency used for the idle state
was 32 KHz while the configuration and sample fetching was
simulated with clock bursts of 2.4 MHz. The lower bound
indicates the idle state while the upper bound indicates the
maximum momentary consumption. The power consumption
is dominated by leakage and could be further optimized with
using special low leakage gates, which have longer channel
transistor and/or thicker gate oxide. Commercially available
components (TPS3610, ADC7040) were measured in order to
deduce the power required by the switch and the ADC.

The estimation results are summarized in table I. It shows
that for the proposed partially integrated solution the power
consumption of Torpor (<4 µW) can be neglected compared
to the power of the load (600 µW-90 mW) present in our WSN.

As the ADC and the control logic are meant to be co-
integrated on the SoC and their consumption is negligible, we
power their discrete implementation on our concept prototype
(ADC7040, FPGA) with an external power supply.

TABLE I
TORPOR POWER ESTIMATION FOR THE PROPOSED INTEGRATED SOLUTION

Module Consumption

Torpor Logic 1.57 - 1.96 µW
ADC 0.2 - 1 µW
Power switch 800 nW

Total under 4 µW

2) Software Overhead: To estimate the SW overhead in
terms of non-volatile memory footprint, an example applica-
tion with 3 tasks was written and compiled once using the
Torpor runtime software and once without. The difference in
binary size was approximately 5kB with standard compiler
optimization, out of which the 2.7kB are needed for the
automatic task characterization routine, that does not however
have to be in the final binary of the application, once the tasks
are defined and characterized.

To estimate the SW overhead in terms of execution time
overhead, it was measured that per task execution that was
approximately 430us with a CPU clock of 12MHz and 1MHz
SPI clock. For the tasks used in our evaluation that will
be described below, this execution time overhead amounted
for the 0.1-1% of the execution time. The actual instructions

needed could be executed much faster with higher clock-rates
but a large part of the measured overhead is attributed to SPI
read/write commands that are configured to be blocking. The
SPI communication was necessary on this prototype as discrete
components were used, but in a fully integrated torpor solution
it will not, so this overhead is expected to be lower.

B. Experimental Setup

To evaluate the benefits of Torpor, the implemented setup
was configured to execute a number of synthetic applications
under different input power conditions using different execu-
tion strategies (fig. 6).

A solar panel was placed inside a solar test-bed, an isolated
environment where the illuminance levels can be set. The
solar panel was connected to the input of our booster circuit,
providing a controlled and reproducible way of specifying
the available input power to our system. The voltage and
current at various points of interest were measured using a
Rocketlogger [32], an open-source measurement device meant
for the characterization of harvesting powered IoT devices.
Rocketlogger not only supports the measurement of multiple
voltage and current channels but also has a wide range and
high accuracy. This enabled the calculation of several figures
of merit, the main being:

• The energy efficiency factor Eeff, indicating the percent-
age of the harvested energy was used by the load while
in its active or idle state

• The execution rate, indicating the number of application
executions per minute

• The average power consumed by the load P̄load

In IoT applications that rely primarily on volatile energy
sources, only opportunistic execution can be achieved. The
lifetime is mainly determined by the choice of battery and
the always-on tasks. The energy efficiency and execution rate
are crucial figures of merit to show how well a platform
will perform in given harvesting conditions. Achieving higher
efficiency and execution rate than the target of the application
may often lead to redesigning with a smaller harvester and
reducing the cost.

load
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Fig. 6. For repeatable experiments of Torpor’s harvesting-driven mode, the
solar panel was placed in a controlled environment. The harvesting and load
power were recorded for analysis. The ADC and FPGA were externally
powered.

C. Validation of Task Characterization

To evaluate the task characterization process, all voltage
execution thresholds for the scheduler evaluation were derived



Fig. 7. Photo of FPGA-based Torpor prototype. The blue PCB (left) is a
commercial FPGA evaluation kit, the purple-PCB (right) is custom-made and
includes all other discrete components used for the evaluation.
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Fig. 8. System starting up with the characterization process for a chain of 3
tasks, followed by normal execution.

using this method. An example run of the process, used to
characterize the task-set for the Energy-oriented and Power-
oriented dynamic schedulers comparison, can be seen in fig. 8.
One after the other, each task is executed a pre-configured
number of times from maximum voltage and the average
threshold is calculated. The experiment was repeated to test
its repeatability and the thresholds were found to be within
2 LSBs of difference between each run. The results can be
found in table II. The characterized power drawn at Vbuff is
always more than the one drawn from Vload, due to the voltage-
dependent buck controller’s efficiency. The voltage threshold
estimation is scaled so that the interval [0...255] is mapped
to [0...5.32]V of Vbuff. The task power estimation is scaled
arbitrarily so that the expected task power numbers can fit to
be represented in the [0...255] range with sufficient accuracy.
Only the relative power between tasks matters and the ratio
between the estimated task powers is matching the ratio of the
Pload while the tasks are being executed.

D. Validation of Battery- and Harvesting- driven modes

Low or zero harvesting input power, should lead the system
to fall back to Battery-driven mode without losing Vload,
pausing energy-driven tasks. This scenario was tested and in
fig. 9. It can be seen that Torpor manages to retain its state and
as soon as there is sufficient Ph, switches back to Harvesting-

TABLE II
EXECUTION VOLTAGE THRESHOLDS AND POWER ESTIMATIONS BY THE

TASK CHARACTERIZATION PROCESS

Task Sense Process Transmit
Task Duration (s) 0.035 0.333 0.088

Pload (mW) 77 5.1 5.1
Eload (mJ) 2.695 1.7 0.449

Vthres,est [0...255] 235 213 144
Ptask,est [0...255] 221 17 14
Etask,est (mJ) 3.025 2.351 0.665
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Fig. 9. System falling back to battery mode, pausing energy-driven tasks and
recovering when enough harvesting power is available.

driven mode, picking up the task execution from where it left
off.

E. Scheduler Evaluation

In order to evaluate different Torpor scheduling policies,
synthetic applications will be executed under several input
power conditions. Applications are composed of a low power
always-on task, and two types of energy-driven tasks: medium
power and high power. The power consumption is approxi-
mately 600 µW for always-on tasks, 5 mW for medium power
tasks and 77 mW when executing additional high power tasks.
These power levels represent sense and transmit tasks typically
found in WSN applications. Static schedulers are evaluated
under constant harvesting power and then contrasted with
the dynamic energy-oriented dynamic scheduler under vari-
able harvesting power. Finally, the energy-oriented dynamic
scheduler is compared to a power-oriented dynamic scheduler
under similar variable harvesting power scenario but different
application. The evaluation took place for time long enough
for the system to reach steady state.

1) Static Scheduling Evaluation: We consider two corner
cases of static schedulers. Single executes all energy-driven in
a single energy burst, while split schedules one burst per task.
For this experiment, a synthetic application with five medium
power tasks was chosen. Two constant harvesting levels were
tested: 1.3 mW and 3.2 mW. The application execution rate per
minute and the energy efficiency are presented in table III and



the voltage of the buffering capacitor for the case of Ph =
1.31 mW is depicted in fig. 10.

TABLE III
EVALUATION OF STATIC SCHEDULERS WITH CONSTANT Ph .

Ph = 1.3 [mW] Ph = 3.2 [mW]
scheduler ratio scheduler ratiosingle split single split

exec/min 2.6 6.9 ×2.6 31.2 39.1 ×1.3
Eeff [%] 55.2 67.0 ×1.2 58.0 66.7 ×1.2

P̄load [mW] 0.71 0.87 ×1.2 1.84 2.16 ×1.2
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Fig. 10. The voltage on the buffering element when using single and split
schedulers under constant harvesting power (Ph = 1.3 mW). The single
scheduler results in P̄load = 0.71 mW while split in P̄load = 0.87 mW.

2) Task Energy-Oriented Scheduling: To evaluate the ben-
efits of dynamic scheduling strategies, the input power was
variable but periodic, alternating between low and high energy
availability. In the first evaluated case (Case I), the illuminance
was set to provide a low base of available input power with
peaks of high available input power (lasting 3 s and repeating
every minute). In the second case (Case II), the peaks were
shorter (0.5s) and provided very high available input power.
The average P̄h for each case is reported in table IV. Two
synthetic applications consisting of medium and high power
tasks were chosen, with 5 tasks for Case I and 3 tasks for
Case II. The energy-oriented dynamic scheduling strategy,
as explained in section V-C, is evaluated and presented in
table IV. The voltage across the buffering capacitor in Case II
is presented in fig. 11.

TABLE IV
EVALUATION OF DIFFERENT SCHEDULERS WITH HIGHLY VARIABLE Ph .

Case I Case II
schedulera

ratiob schedulera
ratiob

split dynamic split dynamic

P̄h [mW] 1.33 1.32 ×1.0 1.15 1.29 1.1
exec/min 3.0 3.7 ×1.3 2.8 6.2 ×2.2
Eeff [%] 60.6 66.4 ×1.1 61.2 69.7 ×1.1

P̄load [mW] 0.80 0.88 ×1.1 0.70 0.90 ×1.3
a Both schedulers run one energy-driven task per burst. Split has a static

order while dynamic depends on harvesting power and application state.
b Ratio refers to the dynamic scheduler evaluation metric over the split

scheduler evaluation metric.

3) Task Power-Oriented Scheduling: In this experiment
we consider a similar scenario of low available input power
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Fig. 11. Traces from Case II experiments of split and dynamic schedulers.
A) Harvesting power B) Vbuff and C) Zoomed in Vbuff to show saturation.
The dynamic schedulers can reduce the energy losses and avert the saturation
effect on short moments of high input power.

for 59s and very high peaks for 1s, repeating periodically,
but this time considering a high power Sense task, followed
by a long medium power Process task and a short medium
power Transmit task. The schedulers evaluated are the energy-
oriented dynamic scheduler and a power-oriented dynamic
scheduler which makes use of the task power estimations
obtained by the task characterization process (table V). This
scheduler prioritizes the highest power executable task when
the input power is above a threshold and prioritizes the lowest
power tasks when the input power is below that (fig. 12,
fig. 13).

TABLE V
EVALUATION OF DYNAMIC SCHEDULERS WITH HIGHLY VARIABLE Ph .

scheduler ratioE-oriented P-oriented

Ph [mW] 1.34 1.97 ×1.5
exec/min 8.5 13.2 ×1.5
Eeff [%] 63.6 65.5 ×1.0

P̄load [mW] 0.85 1.29 ×1.5

F. Discussion

The results show that the execution rate of energy-driven
tasks can be easily doubled when using split scheduling
as opposed to single burst scheduling. This is due to the
reduction of the load power consumption. Since the load
behaves like a current sink, a lower Vbuff also reduces the
power dissipation from the buffering capacitor. The saved
energy is then translated into useful load energy and therefore
leads to more application executions.

Dynamic schedulers behave exactly as static split schedulers
when harvesting power is constant, or when all energy-
driven tasks are of equal power and energy. In these cases,
both dynamic and static schedulers have the same choice of
available tasks, so the dynamic schedulers cannot differentiate
their behaviour and influence the Pload in any way different
than the static split scheduler. The benefits of using dynamic
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Fig. 12. A time interval of the voltage on the buffering element when using
the energy-oriented scheduler under highly variable harvesting power and the
order of execution of its tasks. Energy buffer saturation is not avoided.
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Fig. 13. A time interval of the voltage on the buffering element when using
the power-oriented scheduler under highly variable harvesting power and the
order of execution of its tasks. Energy buffer saturation is avoided.

scheduling become visible when there is enough diversity at
the input power levels and available tasks.

Compared to the (static) split scheduler, the performance
improvement of the (dynamic) energy-oriented scheduler
stems from two effects. The first is again the reduction of
the load power consumption; when the input power is low,
static schedulers will execute lower-energy tasks or wait until
enough energy is accumulated for higher-energy tasks depend-
ing on which task gets its turn for executed. By contrast,
dynamic schedulers prioritize low-energy tasks whenever the
input power is low and by doing so limit prolonged stays in

high Vbuff levels. The improvement in energy efficiency is pos-
itively correlated to the execution rate, but differs depending
on the amount of energy that the node is using for its always-
on tasks as opposed to its energy-driven tasks. The second
effect is the avoidance of Ebuff saturation and is visible in Case
II of the comparison between static and dynamic schedulers.
If, for example, an application consists of a low-power and
high-power task and the harvesting power falls in between, a
static scheduler can saturate Ebuff when running the low-power
task. Dynamic schedulers can mitigate this by matching time
periods of low Ph to less demanding tasks and time periods
of high Ph to the most demanding tasks. Since the dynamic
scheduler in Case II can avoid saturation of Ebuff, it manages
to harvest more input energy. This is why the improvement
ratio of its Eeff differs from that one of its Pload. Since the
Ebuff will not be saturated, the total harvested energy Ein
can be increased. This means that the total energy consumed
by the load may increase, without necessarily increasing the
metric of energy efficiency. Overall, the increased energy
efficiency results in the load receiving a larger portion of the
harvested energy. Thanks to the decoupled nature of the energy
management system, the application circuit is guaranteed to
operate at its most efficient point, regardless of the transducer’s
current and voltage. In this way, the system’s energy efficiency
is directly correlated to the application execution rate.

On the comparison between the two dynamic schedulers
however, the energy-oriented scheduler can no longer avoid
saturation, because the high-power task is the first in the task-
chain (Sense) and this conflicts with its policy to prioritize
tasks close to the end of the chain whenever the input power
is high. In such cases, it is crucial for the scheduler to know
which task has the highest power needs and this is what
the power-oriented scheduler utilizes to perform better. The
power-oriented scheduler, clearly defers the execution of its
highest-power task until the input power is high and during
these short time intervals this task monopolizes the execution
time, making the most out of the available harvesting energy.

It should be noted that even though the harvesting power
was, on average, less than 4 mW for all experiments, the load
was able to execute power-hungry tasks of up to 90 mW.
This is thanks to the burst-generation scheme that efficiently
reduces the average power of energy-driven tasks to match the
harvesting power, while still guaranteeing always-on tasks.

The software overhead may be negligible or quite relevant
as cost, depending on the size and duration of the application’s
tasks. It will also greatly vary if Torpor is implemented on a
different MCU as part of an ASIC. No effort has been put to
optimize either in size or speed at this prototyping phase. A
direct optimization would be to revise the code so that it is not
stalling when using the SPI and a further optimization would
be not to re-write all the task priorities when they have not
been changed. With SEMU is implemented as an ASIC pe-
ripheral, another more optimal internal communication scheme
would be used instead of SPI anyway.



VII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented Torpor, a power-aware hard-
ware scheduler that enables IoT nodes to efficiently execute
part of their applications using irregular harvesting power,
while still guaranteeing their always-on required functional-
ity with a battery. Torpor supports both static and dynamic
scheduling policies and is highly configurable, offering an
interface to the application designer and an automatic task
characterization procedure. As demonstrated by a complete
system prototype based on discrete components, Torpor’s
input-power-aware dynamic schedulers can improve the en-
ergy efficiency and execution rate of energy-driven tasks by
1.2× and 2.6×, respectively. Using dynamic schedulers aware
not only of the input power but also of the tasks’ power,
may improve the harvested energy by 1.5× resulting into
the improvement of the execution rate by the same factor.
The power overhead introduced by Torpor’s hardware when
integrated in a SoC is estimated to be under 4 µW, making it
suitable for a wide range of IoT applications.

This work opens up the potential of future extensions
in various directions, such as more sophisticated dynamic
schedulers. One main aspect to take into account is
applications that include non-atomic (i.e. interruptible)
tasks. Non-atomic tasks can be handled as atomic but not
vice-versa. In the case of non-atomic tasks, depending on the
cost of saving the task state, pausing execution and resuming,
additional improvement could be achieved. Another aspect
that could be considered is look-ahead schedulers that would
expect to make a more efficient task-scheduling decision in
the immediate future, as in [33]. Such an approach would
imply predicting the input power in the future and depends
on the predictability of the energy source, but its benefits
versus its risks could be explored.
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