
Multi-Agent Systems on Ultra Low
Power Platforms

Master Thesis

Jannik William

williamj@student.ethz.ch

Computer Security Group

Department of Information Technology and Electrical Engineering

ETH Zürich

Supervisors:

Naomi Stricker
Dr. Andres Gomez

Prof. Dr. Kaveh Razavi

November 15, 2022

mailto:Jannik William<williamj@student.ethz.ch>

Acknowledgements

I’d like to thank Andres Gomez and Naomi Stricker for their extensive support
throughout the thesis. The weekly and spontaneous meetings were always very
interesting and helping.

The biweekly meetings with Jomi Hübner and others of the Universidade
Federal de Santa Catarina gave me some very helpful insights from the multi-
agent community perspective.

I also want to thank Prof. Dr. Kaveh Razavi, the Computer Security
Group, the Computer Engineering Group and the chair of Interaction- and
Communication-based Systems at University of St. Gallen for providing me with
the opportunity to work on this interesting topic.

i

Abstract

As the interest in IoT increases, lots of embedded devices get distributed. De-
spite some of them having complex low-level functions like signal processing or
machine learning, they typically lack higher-level intelligence. With multi-agent
systems in AgentSpeak, there exists a programming language for high-level be-
haviour, but only for systems with no practical resource constraints. This thesis
will look at an existing framework for translating a single-agent AgentSpeak pro-
gram to C++, evaluate the possibilities for the extension to multi-agent systems
and implement them on a modern ultra-low-power sensor platform. The useful-
ness of the embedded multi-agent framework is demonstrated in a small light
control application. Experiments show very promising results regarding energy
consumption and communication overhead.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Related Works 3

3 Preliminaries 5

3.1 Traditional Multi-Agent Systems 5

3.1.1 Agents . 5

3.1.2 Belief-Desire-Intention . 6

3.1.3 AgentSpeak . 7

3.1.4 Illocutionary Force . 7

3.1.5 Proactivness vs. Reactiveness 8

3.1.6 Minimum Requirements for a Platform Running Low-
Power Agents . 8

3.2 Platform . 8

3.2.1 DPP3e . 8

3.2.2 Low-Power Wireless Bus 9

3.2.3 Processor Interconnect . 11

4 Low-Power Single Agent System 12

4.1 Translation Engine . 12

4.2 BDI Runtime . 13

4.2.1 Reasoning Frequency in Low-Power Environments 15

5 Cooperative Multi-Agent System 17

5.1 New Features on the Agent Level 17

iii

Contents iv

5.1.1 Reasoning Cycle . 17

5.2 Derive a Common Language Between Agents 18

5.3 Extension to a Full Decision Cycle 19

6 Implementation 22

6.1 Single Agent Implementation . 22

6.2 Multi-Agent Implementation . 23

6.2.1 Full Decision Cycle . 23

6.2.2 Communication . 23

6.2.3 Embedded BDI Framework 25

6.2.4 Flexibility of Extending the Framework 28

7 Experimental Evaluation 29

7.1 Case Study: Controlling Room Illuminance with Intelligent Agents 29

7.1.1 Goal 1: Preserve the Room Illuminance Efficiently 30

7.1.2 Goal 2: Update Environment Based on User Preference . 30

7.2 Single-Agent Application . 30

7.2.1 Experimental Set-Up . 30

7.2.2 Results . 32

7.3 Multi-Agent Application . 34

7.3.1 Experimental Set-Up . 34

7.3.2 Results . 36

7.4 Analysis . 39

8 Conclusion 41

8.1 Future Work . 41

Chapter 1

Introduction

The interest in Internet of Things (IoT) is increasing year after year. This is
fueled through advancements in ultra low-power computing (e.g. recent ad-
vancements in the PULP project [1]), efficient wireless networks (e.g. [2]) and
energy harvesting (e.g. [3–5]). Wireless Sensor Network (WSN) are an impor-
tant part in this domain. They consist of many sensor nodes, which measure the
environment and then send the data to a central node to process it and reason
about actions [6]. There is a trend to make the sensors itself more intelligent
with complex filters and machine learning models. But the system overall usu-
ally lacks higher level intelligence and autonomy. As the processing capabilities
and the efficiency of ultra low-power embedded systems increases continuously,
the question of whether it is viable to shift reasoning straight to the nodes to
make sensor networks smarter and more independent.

The community of Multi-Agent Systems (MAS) [7] has important concepts
and models to let different entities act autonomously and collaborate through
communication. One such model is belief-desire-intention (BDI) [8], where the
different agents are modelled in a way, that replicates the human decision-
making. Agents can act reactive, where they act on events and proactively,
where they actively try to work towards a goal with self-initiative. These be-
havioural patterns creates a desirable separation of concerns in complex systems,
that facilitates modularity, reconfigurability and even the testing of individual
software components. The area of use however is limited to high power com-
puters, as these frameworks usually resort to high-level software platforms (e.g.
Java for JaCaMo [7] or JADE [9]) and require full networking capabilities.

This thesis will try to merge the expertise from the MAS community with
that of the low-power community and extend an existing single-agent framework
in C++ with inter-agent collaboration capabilities for low-power sensors. This
approach allows experts for embedded systems to implement low-level functions
for the individual sensors, while experts from the MAS community can define
the high-level behaviour of the whole system. With such a strategy, sensor
networks can become a lot more self contained and use shared knowledge of the
whole network to act intelligently (e.g. offloading tasks to more powerful agents),

1

1. Introduction 2

resulting in a completely new way of deploying connected sensors.

In Chapter 2, this thesis is put in relation to the current scientific topics
and advantages of this solution are compared to other approaches. Chapter 3
describes the theoretical foundation about MAS and introduces the low-power
sensor platform, which is used to implement the agents. The system architecture
of the single-agent BDI framework is introduced in Chapter 4 with the extensions
needed for the multi-agent framework described in Chapter 5. Chapter 6 presents
the implementation of the agent framework on the DPP3e platform. The single
agent and multi-agent framework is evaluated and analyzed in a demo application
in Chapter 7. In Chapter 8, the promising results are summarized and future
research topics are briefly presented.

Chapter 2

Related Works

There are lots of work on MAS and low-power embedded systems, but very
little on low-power MAS. As of this, there are important challenges to be solved
for running communication aware BDI agents on resource constraint devices.
Three different key related topics can be identified: traditional MAS, low-power
computing and low-power communication. Especially the link from the MAS
community to the low-power community poses a challenge, as there does not
exist much work in linking both of them.

The scientific society of traditional MAS have lots of experience in bring-
ing autonomy and intelligence in distributed systems. MAS are composed of
self-organizing entities called agents. Agents exhibit reactive and proactive be-
haviour, allowing them to react on environmental changes and taking initiative
to strive towards a certain objective. Their social ability, meaning the capability
to communicate and exchange knowledge, allows them to jointly solve complex
tasks [8]. There also exists higher level patterns, namely organizations, where
agents can be grouped to have some sort of regulation and coordination, allow-
ing to bring a structure in a complex environment consisting of heterogeneous
agents [7]. The advantages of agents and MAS can be seen in a lot of works, e.g.
[10–12]. One major drawback of such MAS systems is their need for high power
computers, as a lot of the frameworks, such as JaCaMo or JADE, require Java
and full networking capabilities.

In the domain of low-power computing, there has been lots of progress made
in making computing more efficient and enable increasingly complex artificial
models to be employed on embedded processors. E.g. [13] presents a system-on-
chip (SoC) with multiple cores for low-power near-sensor analytics algorithms
(NSAAs) and deep neural network (DNN) inference on IoT devices. Also on
the side of software, there is constant progress being made to make the devices
themselves more intelligent. [14] presents a framework to enable online learning
for IoT devices. We therefore have the benefit of having increasingly powerful
low-power devices with complex data processing at our hands, but there still
lacks scientific works, that explore higher level autonomy of these devices. They
usually just sense, infer and report to a central entity to decide on actions.

3

2. Related Works 4

In low-power communication, we can distinguish between asynchronous and
concurrent communication protocols. Asynchronous protocols, such as Blue-
tooth Low Energy (BLE) [15], is characterized by on-demand transmission of
data. This allows very little communication delay, as data can be transmitted at
any time. A drawback of this approach is, that it is not possible to broadcast a
message to every node in an energy efficient manner. There exists a mesh oper-
ating mode in BLE [16], but this mode needs high power, always-on relay nodes
to work. For low-power asynchronous flooding network, there exists works, that
use very efficient wake-up radios to initiate communication (e.g. [17]). Concur-
rent protocols work differently. They rely on network-wide time synchronization
and time slots. As this approach allows nodes to just wake up for the necessary
time, it is much more efficient. E.g. Low-Power Wireless Bus (LWB) [18] utilizes
this strategy. This protocol has the advantage of increasing the range through
a multi-hop flooding technique and thus can very efficiently broadcast packets
throughout the network.

There exists some work, that tried to link the low-power domain with agents.
In e.g. [19], there is a MAS implemented in Embedded C or in [20] a mobile agent
middleware for self-adaptive WSN in an assembly-like language. The solutions
in these works however is application specific and completely ignores the BDI
model. The approach in [21] tries to solve similar problems, as proposed in this
work, but only considered a single agent without taking low-power requirements
into account.

Compared to traditional MAS, the suggested general-purpose BDI agent pro-
gramming framework runs on resource constraint devices, while retaining the
core reasoning characteristics of the BDI model, like the reasoning cycle. In
the domain of low-power embedded systems, this agent programming framework
brings a higher level of autonomy and intelligence to wireless sensor networks.
One of the enabling factors, which allows MAS on embedded devices, is efficient
all-to-all wireless networks.

Chapter 3

Preliminaries

In this chapter, some important prerequisites are presented. First, traditional
Multi-Agent Systems (MAS) with its core concepts are presented. In a second
part, the platform, where the agents are implemented is introduced. It is a
state-of-the-art sensor platform with multiple processors to separate tasks.

3.1 Traditional Multi-Agent Systems

3.1.1 Agents

To understand MAS, it is necessary to first understand the term agents. Ac-
cording to [22], agents are entities (e.g. pieces of software), that can perceive the
environment and act on it. But how do they relate to other types of software?

We can classify programs into two different categories: functional and reac-
tive. The functional program paradigm tries to solve problems in a declarative
manner (”everything is a function”). The sphere of influence is very narrow
and clearly defined (e.g. a data compression tool takes in data and outputs the
compressed data).

If we look at more complex programs, such as the operating system of a
smartphone, the functional approach cannot be applied, since there is no clear
input and output. The behaviour depends on various internal states (e.g. run-
ning applications) and events (e.g. user input requesting the deletion of a file).
Such systems, with their main characteristic of maintain interaction with their
environment, are called reactive systems.

Agents belong to reactive systems [8]. What distinguishes them from other
reactive systems is their autonomy. This is achieved, when an agent can be given
a goal (or desired state), and it pursues actively, while it decides on its own,
how it achieves it. The main characteristics of such agents are their autonomy,
proactiveness, reactivity and social ability [23].

5

3. Preliminaries 6

Autonomy exists in various degrees. From coffee machines, that only do
what they are told to do up to humans, which are fully autonomous. Agents
are somewhere in between. Goals can be delegated to them and they figure out
themselves, how they should achieve them. As it would be too complicated to
have them figure out everything entirely on their own, a set of plans is provided
for the agent. To now achieve a goal, an agent combines different plans to an
overall plan.

Agents are required to be proactive, meaning that they actively try to work
towards a goal. On the contrary, we have passive programs, that only do some-
thing, when they are called.

Another characteristic of an agent is their reactivity. When the environment
changes, an agent should react on that and possibly choose a different way in
reaching the goal.

Finally, the agent should be able to coorperate and coordinate with other
agents. To be regarded as social ability, the communication should not only
be the exchange of simple measurement information and commands. It should
be a knowledge-based information exchange (exchange beliefs, goals and plans).

3.1.2 Belief-Desire-Intention

A common design model for agents is the belief-desire-intention (BDI) approach,
which is based on human behaviour. The internal state of an agent is stored in
these three data structures.

A belief is the knowledge (does not have to be truthful), that an agent has
about the environment. This can e.g. be the current room illuminance.

Desires are options, that an agent might take. It is not committed to those
and they can be contradictory.

If an agent commits to one of its options, it becomes an intention. Now the
agent works actively towards its commitment.

To make decisions and take actions, there needs to be some kind of mecha-
nism in the agent. This is called practical reasoning. In the BDI model, the
reasoning works as follows [8]:

1. update agents beliefs based on the environment

2. decide on an intention

3. compile a plan to achieve the intention

4. execute plan

3. Preliminaries 7

3.1.3 AgentSpeak

AgentSpeak [24] is a programming language, which can be used to represent an
agent in the BDI model. An implementation with extended features is Jason,
which is used in this work. An AgentSpeak program starts with specifying the
initial beliefs an agent has of the environment and initial goals, the agent pursues.
After the initial state of the agent, its plans are stated. They consist of an event,
that triggers the plan (e.g. a belief or goal addition). A plan can have a context,
meaning a condition, which has to be met (evaluates to true). Finally, a plan
has a context, where events can be generated and/or actions invoked. There
are two types of actions, normal actions and internal actions. Normal actions
have the characterization, that they change the environment. Internal actions
on the contrary do any type of processing in the agent’s mind. Examples are e.g.
.wait(5000), which suspends an intention for 5 s. Another important example
is .broadcast(tell, belief), which broadcasts a belief amongst all agents.
This internal action is key to multi-agent cooperation. In Listing 1, there is an
example of a simple AgentSpeak program.

1 // Initial beliefs

2 belief .

3

4 // Initial goals

5 !goal .

6

7 // Plans

8 +belief: condition <- action .

9

10 +!goal <- .internal_action .

Listing 1: There is an initial belief belief and initial goal !goal for the agent.
They create the events +belief and +!goal. For both of the events, there are
plans, which the first one has a condition (another belief, which has to equal
to true, that the plan is executed) and the action action in the body. The
second plan is triggered by the goal addition +!goal and invokes the action
.internal_action.

3.1.4 Illocutionary Force

The information exchange between agents is knowledge based. So the communi-
cation has to somewhat represent different types of interactions. Lets e.g. look
at the phrase ”the light is on”. It tells a listener, that the light is on. Basically,
it is an exchange of a belief about the state of the light. If we however look at
the phrase ”turn on the light”, commands the listener to turn on the light. In
other words, the listener is told to achieve a certain state, namely that the light

3. Preliminaries 8

is on. These acts of speech can be systematically listed. The most important
used in this work are:

• tell: Inform the other party about something, that is true (belief addition)

• untell: Inform the other party about something, that is not true anymore
(belief deletion)

• achieve: Command the other party to reach a certain state (goal addition)

• unachieve: Command the other party to not reach a certain state anymore
(goal deletion)

3.1.5 Proactivness vs. Reactiveness

The terms proactive and reactive are already introduced in Section 3.1.1. As
they are important concepts for the intelligence of agents, it should be clarified,
how they are represented in an AgentSpeak program. Both behaviour patterns
are already indirectly introduced in the example of Section 3.1.3. Proactiveness
(goal-directed behaviour) is directly represented by the the plan, which is trig-
gered by the goal addition +!goal. The reactive nature is exhibited by the event
change induced plan (it reacts to the environment).

3.1.6 Minimum Requirements for a Platform Running Low-
Power Agents

To take advantage of single agent and multi-agent systems, we need a low-power
platform with enough computing power and memory to reason and save plans.
The platform also needs to have some kind of low-power communication means.
A suitable platform is presented in the next section.

3.2 Platform

3.2.1 DPP3e

The DPP3e [25] (Figure 3.1) is a modern harvesting based sensor platform based
on the Dual Processor Platform (DPP) [26]. The Dual Processor Platform fea-
tures a separation of core application and communication. This allows for inde-
pendent development of the different domains. Between the two domains sits a
processor interconnect, which is used for asynchronous inter-processor commu-
nication. In Figure 3.2, the data flow is visualized.

The application domain features an Ambiq Apollo 3 Blue Plus [27] with 2 MB
flash size, 768 KB of SRAM and a clock speed of 48 MHz. This provides enough

3. Preliminaries 9

space for the BDI framework with complex logic. The Arm Cortex-M4 based
processor is tailored for low-power application, as it features an active power
consumption of 6 µA/MHZ (950 µW at 48 MHz and 3.3 V) and a 1µA deep
sleep mode. This microcontroller also supports Bluetooth Low Energy (BLE),
which supports low-power short range asyncronous communication.

Figure 3.1: The DPP3e harvesting based sensor platform allows the development
of intelligent sensor networks

App
Processor

Inter-
connect

Com
Processor

Figure 3.2: BOLT (Processor Interconnect) acts as a asynchronous data queue
between the application and communication processor

3.2.2 Low-Power Wireless Bus

To let agents communicate, a robust low-power, bidirectional means of communi-
cation is needed. Low-Power Wireless Bus (LWB) [18] supports all-to-all multi-
hop, low-power wireless network based on synchronized network-wide floods (see
Figure 3.3). This enables energy efficient communication between all the agents
in the network. The broadcast happens in communication rounds with a fixed
period, where each participating node is able to send their data in the corre-
sponding node slot. In each slot, the message is broadcasted throughout the
network (all-to-all communication).

The broadcast is based on flooding and time synchronization mechanism of
Glossy [28]. The flooding happens in multiple hops, where each node in range is
receiving the data and retransmits it in the next hop. In Figure 3.4, an example
of a message flood is visualized.

In the communication domain of the DPP3e, an STM32L433 microcontroller

3. Preliminaries 10

Node 1 Node 2 Node 3 ...

...

Slots

Communication Rounds

Period

Figure 3.3: The Low-Power Wireless Bus (LWB) works in communication
rounds, where every node has the opportunity to transmit data. For that, every
node receives a slot in a single round, which is accompanied by a network flood.

3. Preliminaries 11

Figure 3.4: Glossy is a network flooding protocol, where every node receives
data from a previous node and transmits it further to other nodes, which did not
yet receive the data. This allows to transmit data over wide distances without
requiring high transmission power.

in conjunction with the Semtech SX1262 LoRa transceiver with a chip antenna
is used. This allows the platform to perform long-range communication. The
bandwidth is limited compared BLE, since the LWB protocol has a low duty-
cycle (long communication periods) to save energy. In each slot, the maximum
amount of data, that can be sent, is around 120 Bytes (including necessary
header). With a communication period of 15 s, a node is able to send around
8 B/s.

3.2.3 Processor Interconnect

The application and communication domain exchange data over a processor in-
terconnect called Bolt [29]. It is a asynchronous messaging protocol based on
queues. This interconnect allows the application and communication domain to
perform its tasks independently from one another (memory and clock indepen-
dent).

The DPP3e platform with the Ambiq Apollo 3 Blue Plus are excellent plat-
forms to implement low-power BDI agents, since they are energy efficient and
have ample memory and support multiple communication protocols.

Chapter 4

Low-Power Single Agent
System

Dos Santos [30] introduced a Jason-based [8] lightweight single agent frame-
work for embedded devices, which implements the principles mentioned in Sec-
tion 3.1.1 without the social ability. Jason is an interpreter for an extended
version of AgentSpeak (Section 3.1.3). My first goal of this thesis is to inte-
grate this embedded BDI framework on a Ultra-Low Power (ULP) embedded
platform with tight processing and memory constraints. The concepts presented
in this chapter will be published in the form of a workshop paper with the ti-
tle Increasing the Intelligence of low-power Sensors with Autonomous Agents at
the Workshop on Challenges in Artificial Intelligence and Machine Learning for
Internet of Things at SenSys ’22.

The framework is devided into two main components. One of them is a
translation engine, which translates an AgentSpeak program into highly effi-
cient C++ code. The other component is the BDI runtime library tied together
with the hardware-dependent code, which is compiled in an executable binary
(Figure 4.1). The high-level development process is to program an agent in
AgentSpeak and implement hardware-dependent code (perception, action func-
tions, real-time OS, etc.) in C/C++.

4.1 Translation Engine

The main task of the translation engine is to convert an AgentSpeak program into
C++. It connects the belief base to perception update functions and actions to
their corresponding function according to a naming convention. The AgentSpeak
program is translated into a special C++ structure representing the initial states
and plans of a single agent. To improve the memory and runtime performance,
the names of beliefs and goals are converted to an integer value. Action names are
also lost, as they are tied to the corresponding function addresses. As the integer

12

4. Low-Power Single Agent System 13

is 8 bits in size, the number of distinct values is limited to 256. In contrast to the
full Jason implementation of AgentSpeak, only propositions, instead of predicates
(allows the use of variables) are allowed. This however does not limit us in
developing reasonable complex agents, if we consider the limited computational
power of embedded devices.

Embedded Device

Agent code
(AgentSpeak)

Framework

Translation engine

AgentSpeak -> C++

BDI runtime
(C++)

Agent code
(C++)

Compilation Binary

Action and
belief-update

functions

HW-
dependent

code

Figure 4.1: The AgentSpeak program together with the action and belief-update
functions are processed by the translation engine, which outputs the C++ equiv-
alent of the agent code. Together with the BDI runtime and the hardware-
dependent code, it is compiled to an executable binary.

4.2 BDI Runtime

The BDI runtime contains the reasoning algorithm of the agent. As a simpli-
fied version of the Jason reasoning cycle, there is no inter-agent communication
implemented. Figure 4.2 visualizes the detailed reasoning process of the em-
bedded BDI runtime and Algorithm 1 the reasoning loop as executed by the
microcontroller. It consists of following steps:

1. Update the belief base and generate events from new perceptions
In this step, sensors percept the environment in the belief update functions.
The measured values are converted to boolean beliefs (e.g. a threshold
comparison of the room illuminance). An event is generated upon a belief
change and added to a queue.

2. Event selection
A single event is selected and processed.

4. Low-Power Single Agent System 14

3. Retrieval of relevant plans
All relevant plans to deal with the event are selected.

4. Determination of applicable plans
The relevant plans are filtered based on their context.

5. Selection of an applicable plan
This step selects the first applicable plan.

6. Selection of an intention for execution
An intention from the intention stack is selected. It has to be active and
must not be suspended (waiting for an event.

7. Execution of one step of an intention
This step executes a single instruction of an intention. Supported are the
addition and deletion of a belief, adding a subgoal, adding new goals and
actions.

As one still might want to use communication (e.g. to control actuators),
one can leverage the action functions to enable non-agent communication.

BUF

Events

Belief
Base

SE

Check
Context

Unify
Events

Plan
Library

SE
Execute
Intention

SE

New
New

Internal Events

External Events

States Beliefs

Events

Selected
Event

Plans

Applicable
Plans

act

Push
New
Plan

New
Intention Intentions

Selected
Intention Action

Percepts

Actions

Figure 4.2: The practical reasoning cycle of the embedded BDI runtime is based
on a simplified version of the full Jason reasoning cycle. It was developed with
low-power embedded devices in mind and hence it only offers the basic features.
This figure is taken from [30].

4. Low-Power Single Agent System 15

Algorithm 1: Reasoning loop as executed by the microcontroller

Add initial beliefs to belief base;
Add initial intentions to intention stacks;
while true do

Perceive the environment;
Update belief base based on changes in environment;
Generate events based on changes;
if Event queue is not empty then

Select event to be processed;
Select relevant plans;
Filter plans based on context;
Select first plan;
Add instructions of the plan into intentions;

end
if Intention stacks are not empty then

Select single instruction of an intention;
Execute this instruction;

end

end

4.2.1 Reasoning Frequency in Low-Power Environments

It is important to decide, at which frequency the reasoning cycle (shown in
Figure 4.3) is executed on the microcontroller, as an agent should be responsive,
but the device should consume only as much energy as necessary. Since the
frequency of running a cycle depends on the application, no general statement
can be made (there is an example in Section 7.2.1). In Section 5.3, another, more
sophisticated approach is discussed.

4. Low-Power Single Agent System 16

R
ea

so
ni

ng
 C

yc
le

Period

Se
ns

in
g

R
ea

so
ni

ng
 C

yc
le

Se
ns

in
g

R
ea

so
ni

ng
 C

yc
le

Se
ns

in
g

Figure 4.3: The period of the reasoning cycle needs to be small, as in one cycle,
there is only one event processed and one instruction of an intention executed.
As of this, there needs to be multiple cycles executed to come to a decision.

Chapter 5

Cooperative Multi-Agent
System

The main goal of this thesis is the extension of the embedded BDI framework to
support multi-agent cooperation. I will discuss in this chapter, what modifica-
tions need to be done in the translation and runtime parts.

5.1 New Features on the Agent Level

The simplest addition to the simplified AgentSpeak language to make the frame-
work multi-agent capable is the .broadcast internal action. This method allows
to broadcast a message amongst all other agents. With the illocutionary forces
(Section 3.1.4) of tell and untell, there is a basic agent communication proto-
col to exchange beliefs, which is sufficient for basic interactions.

Another, more subtle detail, is the required support for arguments for the
.broadcast-action. This needs adaption in the translation engine, which needs
to parse the arguments and convert it to different data types (in Jason, they
are usually of the type Predicate, but this is too broad for resource-constrained
devices).

5.1.1 Reasoning Cycle

The reasoning cycle needs additional steps (see colored steps in Figure 5.1) to
process incoming messages from other agents. These messages are available in a
mailbox, which provides an interface to the hardware-dependent code to put in
messages (incoming arrow in Figure 5.1). At the start of a reasoning iteration, the
mailbox is checked for new mail within checkMail. In a subsequent step (SM), a
single message is selected (in Jason, this step can be modified, but the embedded
BDI framework implements the default behaviour of selecting the first message).
A social acceptance step (SocAcc) is performed on the message. This step should

17

5. Cooperative Multi-Agent System 18

filter out unwanted messages. As this step is not important for simple and small
applications and only gains importance in big MAS with an organizational layer,
it marks every received message as socially acceptable. Finally, the belief base is
revised in BRF based on the received message. The dashed arrow from the belief
update function (BUF) to the belief revision function indicates, that updated
beliefs are taken into account, when generating events. The sending of messages
is not shown in the figure, since it is part of the act-step. As it will be shown in
Section 6.2, the sending of a message is not performed in the high level reasoning
cycle, but will be part of the action functions (see Figure 4.1, Action and belief-
update functions).

BUF

Events

Belief
Base

SE

Check
Context

Unify
Events

Plan
Library

SE
Execute
Intention

SE

New
New

Internal Events

External
Events

States Beliefs

Events

Selected
Event

Plans

Applicable
Plans

act

Push
New
Plan

New
Intention Intentions

Selected
Intention Action

Percepts

Actions

Messages checkMail SM

SocAcc

BRF

Figure 5.1: This shows the minimal additions made to the BDI reasoning cycle
highlighted in red.

5.2 Derive a Common Language Between Agents

The translation engine of the single agent framework translates propositions in
non-reproducible way. It enumerates the proposition based on their first appear-
ance in the AgentSpeak program. This works fine with single agents, as these use
the propositions only for internal operations. If however multiple agents want to
communicate with each other, these proposition values need to be passed around
and could lead to a misunderstanding. In Figure 5.2, an example demonstrates
this issue.

5. Cooperative Multi-Agent System 19

Agent 1

dark .

+dark <- .broadcast(tell, dark) .

Translation:

dark - Proposition(0)

Agent 2

bright .

+dark <- -bright .

Translation:

bright - Proposition(0)

dark - Proposition(1)

M
e
s
s
a
g
e
(
I
L
F
:
:
t
e
l
l
,

0
)

Figure 5.2: Agent 1 wants to tell the belief dark to Agent 2. As Agent 2
translated this belief differently, it falsely translates it to the belief bright.

The most promising solution is the use of hashed proposition names. As
hashes produce reproducible output given a fixed input, same proposition names
get translated equally in every agent program (Figure 5.3). Another advantage
is, that this solution does not depend on a global state or require all agents in an
environment to be compiled at the same time. However special considerations on
hash size and function has to be made to prevent hash collisions (when different
inputs produce the same output). Collisions within the same agent can however
be detected at compile time. As demonstrated in Figure 5.4, the previously
mentioned issue is resolved.

prog1.asl

+dark <- !brighten .

+!brighten <- .broadcast(achieve, brighten) .

prog2.asl

+!brighten <- turn_on_lights .

translate

propDark = hash("dark");

propBrighten = hash("brighten");

translate

propBrighten = hash("brighten");

prog1.cpp prog2.cpp

Figure 5.3: In the translation engine, instead of enumerating propositions in the
order of appearance, they get hashed. This results in propositions having the
same name in different programs are represented by the same numerical value,
allowing inter-agent communication.

5.3 Extension to a Full Decision Cycle

In traditional MAS, the reasoning cycle can be executed with a high frequency, as
no tight resource constraints exists. Executing at a low frequency, as described

5. Cooperative Multi-Agent System 20

Agent 1

dark .

+dark <- .broadcast(tell, dark) .

Translation:

dark - Proposition(0x1b7cbdfb)

Agent 2

bright .

+dark <- -bright .

Translation:

bright - Proposition(0x86168dfb)

dark - Proposition(0x1b7cbdfb)M

e
s
s
a
g
e
(
I
L
F
:
:
t
e
l
l
,

0
x
1
b
7
c
b
d
f
b
)

Figure 5.4: The same example introduced in Figure 5.2 is now working.

in Section 4.2.1, creates unnecessary computational delays, because the infor-
mation to decide on an action is already available most of the times. It would
be beneficial to execute the reasoning loop until it is decided on an action and
then suspend execution for a certain time (see Figure 5.5). This lets the agent
be responsive, once there is information available to make a decision. But it is
also saving on energy, because there are not that many empty reasoning cycles
happening. The problem is, how do we decide, if an agent came to a decision
and is allowed to sleep. The simplest idea one could have, is to stop, if there
are no events pending, all intentions and all messages are processed. There are
however some programming patterns, (e.g. [8, Chapter 8]), where we have plans
in the form of Listing 2. In most of the cases, we want to execute this plan
only once in a decision cycle only to make sure, we keep a state in a changing
environment. In this example, the intention base is never empty the same time
the event base is empty. This results in the breaking condition never becoming
true. A solution for this problem is to only check the event base for events other
than events from achievement goals. There needs to be more research made on
this topic, as it is only tested with the application developed in Chapter 7 and
is not a universal solution. For now, the developer has to make sure, that the
breaking condition complies with his requirements.

1 +!goal <- action1; action2; !!goal .

Listing 2: This adds the event +!goal (does not wait for the event to be pro-
cessed, since the event is added from an achievement goal) after executing the
plan. Thus the event base and intention base are never empty at the same time.

5. Cooperative Multi-Agent System 21

R
ea

so
ni

ng
 C

yc
le

Period

Se
ns

in
g

R
ea

d
fro

m
 B

ol
t

R
ea

so
ni

ng
 C

yc
le

...

Se
nd

 to
 B

ol
t

R
ea

so
ni

ng
 C

yc
le

Se
ns

in
g

R
ea

d
fro

m
 B

ol
t

R
ea

so
ni

ng
 C

yc
le

...

Se
nd

 to
 B

ol
t

Decision
Cycle

Decision
Cycle

Figure 5.5: The decision cycle executes the reasoning cycle, until the breaking
condition triggers a break in the loop.

Chapter 6

Implementation

This chapter describes the implementation of the single agent and multi-agent
application on the DPP3e platform. In Section 6.2, the extensions of the embed-
ded BDI framework is discussed with a focus on the implementation details.

6.1 Single Agent Implementation

To introduce the embedded BDI framework to the Ambiq Apollo platform, firstly
an out-of-the-box single agent application was developed on a Sparkfun Edge
Board. The high level application structure is, to have an agent running on
the application processor of the DPP3e, which communicates actions over BLE
advertising packets to a server, which controls the actuators. This means of
communication is efficient for this application, as there is only a one-way com-
munication, which makes expensive listening redundant. The DPP3e can have
multiple sensors connected, which are read as part of the belief update functions.
Since the Ambiq Apollo 3 Blue Plus supports BLE communication, Bolt and the
communication processor is not used.

The software is based on the open source Real-Time Operating System
(RTOS) FreeRTOS [31], which is integrated in the AmbiqSuite SDK [32] (Soft-
ware Development Kit (SDK) for Ambiq Apollo microcontrollers). It is divided
into three different tasks. The setup of the system is done in the Setup task. This
also starts the application tasks. The SensorTask starts a timer, which periodi-
cally calls a function, which percepts the environment with a Vishay VEML7700
lux sensor [33] and an AMS AS7262 spectral light sensor [34] (with the sensor
driver implemented within the scope of this thesis) and does a single reasoning
cycle for the agent. Communication is handled by the RadioTask. This task
starts a handler for the BLE stack. A packet can be sent through invocation of
the function bleAppSendData. A Raspberry Pi receives the BLE commands and
controls the actuators.

The periodic function is called every 3 s. As already discussed in Section 4.2.1,

22

6. Implementation 23

intentions need multiple steps to be processed. This leads to a computational
delay. This effect is mitigated through the fact, that once it is decided on an
action, it is executed almost immediately, as BLE has almost no delay because
of its asynchronicity.

6.2 Multi-Agent Implementation

We can now use the full potential of the DPP3e’s separation of application and
communication domain. The embedded BDI runtime has to only care about
reading and writing messages to Bolt (Section 3.2.3). In detail, in every reasoning
cycle, the agent checks the indication line of Bolt, if there are new messages in
the queue. If there are, it reads them and stores it in the mailbox for further
processing by the agent. The communication domain handles the communication
between other nodes and does message concatenation (in one full decision cycle,
multiple messages could be generated by an agent which are then concatenated
to a single message packet to transmit over LWB).

In the multi-agent implementation, the full decision cycle (Section 5.3) is im-
plemented. This allows us to push the wake-up cycles further apart to save more
energy in the application domain, as computational delay issues are eliminated.

6.2.1 Full Decision Cycle

Because of the full decision cycle, the wake-up periods could be increased to 15 s.
To realize the full decision cycle, the reasoning cycle (agent->run() method) is
embedded into a loop with following break condition:

• only events of the type EventOperator::GOAL_ACHIEVE are in the event
queue and

• the intention base is empty and

• the mailbox is empty

Additionally, the number of execution is limited to 256. This should prevent,
that unfortunate plans keep the decision cycle active for an unlimited amount of
time. This number can be modified to meet the application’s requirement.

6.2.2 Communication

A routine, which reads messages from Bolt and puts it into a mailbox, is
added to the periodical task. The sending part is implemented in the func-
tion internal_action_broadcast, where the message is serialized and sent to

6. Implementation 24

1 typedef struct {

2 uint8_t node_id:5;

3 uint8_t cmd:3;

4 uint32_t period;

5 uint64_t timestamp;

6 } bolt_header_t;

7

8 typedef struct {

9 bolt_header_t header;

10 union {

11 struct {

12 uint32_t proposition;

13 uint8_t illoc_force;

14 } bdi_msg;

15 struct {

16 uint32_t action;

17 } bdi_action;

18 };

19 } apollo_message_t;

Listing 3: The header of Bolt-message indicates the sending node, which type of
message it is and some timing information. The type can be a timesync-, agent-
or an action message (13 bytes). The content of the message depends on the type.
An agent message contains a proposition and an illocutionary force (5 bytes),
and an action message contains an integer representing an action (4 bytes).

Bolt. Whenever an action is performed, a message gets send to Bolt too, but as
a different type (this is no agent message). In Listing 3, the message structure
is defined.

The software of the communication domain is divided into three main tasks:
the communication task, a pre- and post-communication task. The communica-
tion task handles the LWB communication, the pre task is responsible for the
packet generation and the post task to process the received messages. The pre
task reads agent messages from Bolt and composes it to a single LWB-message
(see Listing 4). This allows the node to send multiple agent- and action-messages
in one packet. The post task does the opposite. It receives messages from other
nodes and splits it up into individual messages. Agent messages are sent to Bolt,
where an agent can read it. If the node is configured as the gateway, it forwards
the action to be taken care of by an external host program.

6. Implementation 25

1 typedef struct {

2 uint8_t cmd;

3 union {

4 struct {

5 uint8_t illoc_force;

6 uint32_t proposition;

7 } bdi_msg;

8 struct {

9 uint32_t action;

10 } bdi_action;

11 };

12 } dpp_mas_bdi_t;

13

14 typedef struct {

15 uint8_t len;

16 dpp_mas_bdi_t msg[DPP_MAS_BDI_ARRAY_MAX_LEN];

17 } dpp_mas_bdi_array_t;

Listing 4: An LWB-message contains an array of Bolt-messages, which is either
of the type agent or action. The size of the LWB-message is determined by the
number of individual messages (1 byte + 6 bytes * numberOfMessages).

6.2.3 Embedded BDI Framework

Translation Engine

The parsing part of the translation engine is extended to recognize internal
actions (new type: BodyInstruction.BodyType.INTERNAL_ACTION). Since ar-
guments are necessary for .broadcast-actions. This is done by first storing
each argument in a list of strings for each body instruction. When writing the
C++ file (in HeaderCreator.java), it is checked, if the internal action equals to
.broadcast. If it is the case, the arguments are converted to the specific C++
types (illocutionary forces as IllocForce and the proposition as integer in the
class Proposition). The arguments themselves are stored in a special object of
the type ActionArgument, which is a wrapper for any argument type.

The proposition translation is modified to implement a CRC32 hash instead
of enumerating the propositions. This is done in the function hash_proposition

inside the HeaderCreator-class. It is also checked, whether there are collisions.
This does not solve for inter-agent hash collisions, but can catch them, if they
happen inside an agent.

In the original framework, the propositional value is represented by an 8-bit
integer. This is too small for a hashing function, as the collision probability is
around 0.39 % for 2 hashes. Therefore the integer size is increased to 32 bits.
This has only a collision probability of 2.32 · 10−8 %.

6. Implementation 26

In the configuration file agent.config, there is now the possibility to set
the mailbox size and the minimum belief base size. The specification of these
sizes is necessary to prevent buffer overflows on the small memory. In the single
agent framework, the belief base did not need to be specified, since all beliefs
were known in advance. That changed in the multi-agent version, since an agent
can always receive an unknown belief from another agent. It is called minimum
belief size, as it has at least the size to store all known propositions.

To check, if the corresponding C++-functions for all actions are present, the
functions-file is read and searched for the expected function names. However if a
function is commented out, the translation engine still recognized it as present. A
small processing step was added, when the file gets loaded, where the comments
get removed. This is done by pattern matching with the regular expression
([\t]*\/\/.*|\/*(.|\n)*?*\/). It is not a full fledged solution, since it
does not ignore strings like "/*", but if the developer has an eye on it, it does
work.

BDI Runtime

The red marked additions in Figure 5.1 you can find in two classes. The mailbox
is implemented in the Mailbox class. It has functions for pushing and popping
messages to and from the queue, can check the mailbox for pending messages
and check a message for its social acceptance. These functions are called in the
Agent class as part of the reasoning cycle (apart from pushing messages to the
queue, this is done externally). This leads to the updated Agent::run() method
in Listing 5.

The messages contained in the mailbox are implemented in the class Message.
It is instantiated with a proposition and a illocutionary force. It contains the
Message::process_message() function, which acts as the belief revision func-
tion. It currently revises the belief base based on messages with the illocutionary
force IllocForce::TELL and IllocForce::UNTELL. There, it checks the state
of a belief and generates necessary events in case of a change. Additionally, there
are serialize- and deserialize-functions to convert messages to a byte stream and
back to interface with any communication device. This was used to test the
framework over UART with manually created messages. In the DPP3e however,
the serialization happens in the communication domain on a different microcon-
troller, where multiple messages can be aggregated (see Section 6.2.2).

The action functions now support arguments (only the ones specifically imple-
mented in the translation engine, which currently is only .broadcast). Even if
the arguments are only supported for selected functions, the general template for
the pointer to action functions changed from bool (*take_action)(void) to
bool (*take_action)(VectorQueue<ActionArgument> * args)). To instan-
tiate an object, one can either pass a proposition or illocutionary force, but

6. Implementation 27

1 void Agent::run()

2 {

3 // Update beliefs

4 beliefs->update(events);

5

6 // Receive and select messages

7 if(mailbox->check_mail())

8 {

9 Message * msg = mailbox->select_message();

10 if(mailbox->socc_acc(msg))

11 {

12 msg->process_message(beliefs, events);

13 }

14 }

15

16 // Checks if there are events to be processed

17 if (!events->is_empty())

18 {

19 event_to_process = events->get_event();

20 plan_to_act = plans->revise(&event_to_process, beliefs);

21 if (plan_to_act) {

22 intentions->add_intention(plan_to_act, &event_to_process);

23 }

24 }

25

26 // Runs intention in case there are any

27 if (!intentions->is_empty())

28 {

29 intentions->run_intention_base(beliefs, events, plans);

30 }

31 }

Listing 5: The updated C++ code for the reasoning cycle. Lines 6 to 14 are
new. The belief revision function is encapsulated in the function call of Line 12.

other types can be easily implemented by adding an additional constructor in
the ActionArgument class and an additional type in ActionArgumentType. Ar-
guments are stored in the objects of BodyInstruction, which represent one
instruction of a plan body.

In the EventBase class, an additional function to check, if there are only
events of a specific type in the event base is added. In the breaking condition of
the full decision cycle (see Section 5.3), it is used to determine, if there are only
events of the type EventOperator::GOAL_ACHIEVE in the event base.

As the number of allowed proposition values exceeds 256, it is also required
to increase the size uf the variable, that holds a queue size. They are changed
from the type of uint8_t to uint32_t. These variables are used to initialize
the VectorQueue class template (based on the builtin class vector). As a 32 bit

6. Implementation 28

processor architecture has usually a 4 byte memory alignment, it should not have
any memory impact.

6.2.4 Flexibility of Extending the Framework

The code of the framework is structured in a way, that allows easy exten-
sions of other more complex actions. E.g. the more sophisticated .send-action
(where a message is dedicated to a specific agent) needs its own definition in
the write_header() function in the HeaderCreator-class with the specifica-
tions of the arguments. The recipient could be defined as own argument type
with an additional field in the struct defined in Listing 3. In the C++ file,
where the actions and belief update functions are defined, a function called
bool internal_action_send() can be added where a message is sent to Bolt
(similar to the function bool internal_action_broadcast().

To support more illocutionary forces, the handling of the message needs to be
implemented in the function Message::process_message(). There it is just a
matter of adding cases to the switch-statement. For more complex illocutionary
forces, one needs to extend the message class with additional member variables
(e.g. tellHow needs a plan in the message).

Chapter 7

Experimental Evaluation

In this section, I will evaluate the single agent and multi-agent framework by
designing a demo application. This application is then implemented both as
single agent and multi-agent version. Both are measured and evaluated. In the
last section, I will compare and contrast both implementations.

7.1 Case Study: Controlling Room Illuminance with
Intelligent Agents

This demo application should show that the framework, whether it is single agent
or multi-agent, is able to efficiently and autonomously control systems composed
of sensors and actors in a proactive manner. It should however not be too
complex, such that the internal mechanics of the agents is fully comprehensible,
to prove proper functioning of the system.

A simple system to show above design goals is the control of the illuminance
in a room autonomously. As the room is a dynamic environment with changing
conditions, the agent should proactively preserve the illuminance as eco-friendly
as possible (e.g. preferring outdoor light over artificial light). It can do that by
triggering following actions:

• turn on or off overhead light

• raise or lower blinds to let sunlight into the room

The agents can perceive the room environment by following channels:

• indoor illuminance in lux

• outdoor illuminance in lux

The second goal is to adapt the illuminance to the users preference. This is done
through an additional sensor input (like a switch).

29

7. Experimental Evaluation 30

7.1.1 Goal 1: Preserve the Room Illuminance Efficiently

A proactive goal pattern ensures that the agent remains committed to the
goal of preserving the room illuminance, whether it should be dark or bright.
This pattern keeps checking the environmental state with the instruction of
!!preserve_light and !!preserve_dark. The context of the plans determines
whether the room should be brightened up, darkened or the room is sufficiently
illuminated (e.g. if it is bright_inside and the room should be bright, the agent
does nothing). To make the system eco-friendly, it prefers outdoor light instead
of artificial light. But outdoor light should only be used, if it is sufficiently high
in intensity. This is done through the beliefs standard_mode_available and
eco_mode_available. The standard mode is available, if the lights are turned
off and the eco mode, if outdoor illuminance is high enough (i.e. it is sunny).
When the agent wants to brighten the room, it considers, which means are avail-
able and selects the most eco-friendly solution. This is determined by the order
of the plans, as the first applicable is selected.

7.1.2 Goal 2: Update Environment Based on User Preference

The user preference is considered in the context of the recursive plans. If the
agent acquires the new belief user_turn_on the agent pursues the new goal of
bringing the illuminance level of the room to a sufficiently high level. The agent
is then commited to this goal, until user_turn_on is not believed anymore. On
acquiring the new belief user_turn_off the agent commits itself to bring down
the illuminance, until it is below the threshold, that dark_inside is believed.

7.2 Single-Agent Application

This section will evaluate the single agent framework using the demo application
introduced above. Firstly, the experimental set-up is explained along with the
exact agent application. Then the results with a trace of beliefs, goals, actions
and illuminance trace are discussed. The following results will be published
within the scope of the workshop paper Increasing the Intelligence of low-power
Sensors with Autonomous Agents at the Workshop on Challenges in Artificial
Intelligence and Machine Learning for Internet of Things at SenSys ’22.

7.2.1 Experimental Set-Up

The single agent application is implemented on the Edge platform from Sparkfun
Electronics. It features the Ambiq Apollo3 Blue with 1 MB of flash, 384 KB of
SRAM and 48 MHz clock frequency (due to a production delay, the DPP3e could
not be used). A BLE radio is also integrated into the Apollo3 Blue MCU for

7. Experimental Evaluation 31

short one-way communication. There are two light sensors connected over I²C.
An Ams AS7262 [34] to perceive the indoor illuminance and a Vishay VEML7700
[33] to do the same for the outdoor illuminance. In a lab at the University of St.
Gallen, a room, which allows digital control of lights and blinds, the experiment
is performed. The outdoor sensor is mounted on the outside wall next to the
blinds, while the indoor sensor is facing upwards, such that it receives the indoor
light most efficiently. The user preference is selected by an accelerometer sensor
(LIS2DH12) by inverting the Z-axis. The Sparkfun Edge board is connected over
UART to a Raspberry Pi, which receives raw data to log. The BLE module of
the Raspberry Pi is used to receive the BLE packets (action commands to turn
on/off the lights and to raise/lower the blinds) sent from the agent. The set-up
is shown in Figure 7.1.

Figure 7.1: The indoor sensor is mounted on a box and is facing upwards. The
outdoor one is mounted to the wall and is facing southwestward. The microcon-
troller contains the agent software and is connected via serial to a Raspberry Pi
to log. The actions are sent over BLE to the Raspberry Pi, which can controll
lights and blinds.

The agent program can be found in Listing 6. It implements the function-
ality of the demo application introduced in the first section of this chapter.
The {bright,dark}_inside and {sunny,cloudy,night}_outside beliefs are

7. Experimental Evaluation 32

updated through the two light sensors, while the user_turn_on/off beliefs are
updated based on whether the Z-axis of the accelerometer is positive or negative.

The experiment is performed in the evening, while outdoor illuminance is
decreasing. This circumstance allows us to expose the ability of the agent to
deal with a changing environment. The light threshold were set to following
levels:

• sunny/cloudy threshold: 400 lux

• cloudy/night threshold: 250 lux

• indoor threshold: 30 lux

The reasoning cycle period was set to 3 s. That means, every 3 s, the sensors
are read and one reasoning cycle of the agent is performed.

1 +user_turn_on <- !!preserve_light .

2 +!preserve_light: bright_inside & user_turn_on <- !!preserve_light .

3 +!preserve_light: dark_inside & user_turn_on <- !brighten ; !!preserve_light .

4 -!preserve_light: user_turn_on <- !!preserve_light .

5 +sunny_outside: user_turn_on <- +eco_mode_available .

6 +cloudy_outside: user_turn_on <- -eco_mode_available ; +standard_mode_available .

7 +night_outside: user_turn_on <- -eco_mode_available ; +standard_mode_available .

8 +!brighten: eco_mode_available <- turn_off_lights ; raise_blinds ; -eco_mode_available .

9 +!brighten: standard_mode_available <- turn_on_lights ; -standard_mode_available .

10

11 +user_turn_off <- !!preserve_dark .

12 +!preserve_dark: night_outside & user_turn_off <- lower_blinds ; !!preserve_dark .

13 +!preserve_dark: bright_inside & user_turn_off <- turn_off_lights ; lower_blinds ; !!preserve_dark .

14 -!preserve_dark: user_turn_off <- !!preserve_dark .

Listing 6: This is the agent program to control the illuminance in a room based
on user preference. The agent can proactively preserve the preferred illuminance
level.

7.2.2 Results

The experiment lasted for 1208 s. The illuminance trace with the goals and
actions from the agent are shown in Figure 7.2. The outdoor illuminance de-
creased from 431 lux at the beginning of the trace down to 262 lux. The indoor
illuminance started at 7.49 lux and decreased to 4.6 lux, while having a high of
213 lux.

The initial state of the room was, that the blinds were down and the lights off.
At the beginning, the goal of the agent was, to keep the room dark. Once it was
committed to the goal of brightening the room, it triggered the action to raise the
blinds (at the 75 s time mark). The delay from having this goal to perform the

7. Experimental Evaluation 33

action was 25 seconds, meaning 8 reasoning cycles were necessary to come to the
decision to raise the blinds (the extra time is due to the communication delay).
After 678 s, the indoor illuminance level fell below the threshold, therefore the
indoor illuminance condition is considered dark. 9 s later (equals 4 decision
cycles), the action got triggered to turn on the lights. Before the experiment
ended, the agent was again given the goal to darken the room. This lead to
turning the lights off and lower the blinds. This took 51 s in total.

101

102

In
do

or

 Il
lu

m
in

an
ce

 [l

ux
]

indoor

light theshold

Goal

Da
rk

en Brighten Darken

0 75 687 1133 1208
Time [s]

Action
Raise Blinds Turn on Lights Turn off Lights

Lower Blinds

3 × 102

4 × 102

Outdoor
 Illum

inance
 [lux]

outdoor

Figure 7.2: The experiment exposed the agents reactive and proactive behaviour
by changing the user preference (goal) and a dynamic environment (changing
illuminance levels).

Low-Level Metrics

In this subsection, the low-level performance of the agent on the hardware and
C++ level is looked at. The agent code consisted of 13 lines of AgentSpeak code
(with one plan on each line. There were a combined 22 instructions and 15 beliefs
in the contexts. Translating these, resulted in 292 lines of C++ code (removed
comments and empty lines). The composition of the binary is summarized in
Table 7.1 and Table 7.2.

Memory region Used Size Region Size %age Used

flash: 358’572 B 960 KiB 36.48%

sram: 393’208 B 384 KiB 100.00%

Table 7.1: The agent occupied a bit more than a third of the flash memory and
used up all sram.

To measure the energy consumption of various tasks, the RocketLogger [35]
was used. This device measured current, voltage and digital pins of the plat-

7. Experimental Evaluation 34

.text .data .bss total

355’116 B 3’456 B 389’752 B 748’324 B

Table 7.2: In this table, the size of the different memory sections, the agent uses
is stated.

form. The system was powered with 3.3 V with two different channels of the
RocketLogger (one for the sensors and one for the microcontroller). The results
in Table 7.3 are divided into sensing, reasoning and communication. It shows
the average energy including its standard deviation for one execution and the
average execution time including the standard deviation per task. Lastly, the
number of samples is specified.

Task Emean Estd dev tmean tstd dev n

Sensing 15.1 mJ 4.4 µJ 569.4 ms 63 µs 114

Reasoning 1.2 µJ <0.1 µJ 334.3 µs 2.9 µs 114

Communication 47.8 µJ <0.1 µJ 15.2 ms 31 µs 147

Table 7.3: Mean energy and execution time including standard deviation of the
different tasks, the agent performed.

7.3 Multi-Agent Application

In the following section, the multi-agent framework will be evaluated with the
same application implemented with two agents. The procedure in performing
the experiment is the same, as in the single agent experiment.

7.3.1 Experimental Set-Up

Two DPP3e’s are used to form a 2 agent system. The specs of this platform
are introduced in Section 3.2.1. The BLE radios in the application domain are
not used anymore for the communication. Instead the LWB protocol in the
communication domain of the DPP3e is used. The demo application is divided
into two agents. One located indoor and one outdoor, each equipped with a
light sensor. There is another DPP board, which listens to the LWB protocol.
This board is connected over UART to the Raspberry Pi, forwarding all packets.
Together, they act as gateway to forward commands to the lights and blinds.
The application domain of the outdoor agent is also connected over UART to
the Raspberry Pi (it prints the outdoor light conditions) and together with the
LWB packets get logged to a text file for further analysis. The application

7. Experimental Evaluation 35

domain of the indoor agent is connected to a computer, which logs the indoor
light conditions. In Figure 7.3, the set-up for the multi-agent experiment is
shown.

Figure 7.3: The outdoor sensor was placed at the same spot as in the single
agent experiment. It is directly connected with a DPP3e running the outdoor
agent. The DPP3e is connected to a logging device. The indoor agent with the
sensor is mounted on a table facing upwards. It is also connected to a logging
device. The gateway to receive action commands and act on the lights/blinds
consists of a LWB radio connected via serial to a Raspberry Pi.

The two agent programs can be found in Listing 7 and Listing 8. The in-
door agent has the same program as the agent in the previous experiment, but
has no update functions for the {sunny,cloudy,night}_outside beliefs. They
are communicated through broadcast actions by the outdoor agent. The user
preference is selected by a General Purpose Input/Output (GPIO) pin of the

7. Experimental Evaluation 36

microcontroller running the indoor agent.

This experiment is conducted two times in the evening with decreasing out-
door illuminance. For the first execution of the experiment, we set the following
light thresholds:

• sunny/cloudy threshold: 4000 lux

• cloudy/night threshold: 500 lux

• indoor threshold: 18.89 lux

For the second execution, we used these thresholds:

• sunny/cloudy threshold: 2100 lux

• cloudy/night threshold: 1800 lux

• indoor threshold: 5 lux

The decision cycle period was set to 15 s, which aligned with the communication
period. These were however not synchronized (worst-case, it could be, that
communication happens right before the decision cycle, leading to almost 15 s
delay, until an action is sent).

1 +user_turn_on <- !!preserve_light .

2 +!preserve_light: bright_inside & user_turn_on <- !!preserve_light .

3 +!preserve_light: dark_inside & user_turn_on <- !brighten ; !!preserve_light .

4 -!preserve_light: user_turn_on <- !!preserve_light .

5 +sunny_outside: user_turn_on <- +eco_mode_available .

6 +cloudy_outside: user_turn_on <- -eco_mode_available ; +standard_mode_available .

7 +night_outside: user_turn_on <- -eco_mode_available ; +standard_mode_available .

8 +!brighten: eco_mode_available <- turn_off_lights ; raise_blinds; -eco_mode_available .

9 +!brighten: standard_mode_available <- turn_on_lights ; -standard_mode_available .

10

11 +user_turn_off <- !!preserve_dark .

12 +!preserve_dark: night_outside & user_turn_off <- lower_blinds ; !!preserve_dark .

13 +!preserve_dark: bright_inside & user_turn_off <- turn_off_lights; lower_blinds ; !!preserve_dark .

14 -!preserve_dark: user_turn_off <- !!preserve_dark .

Listing 7: The indoor agent program is exactly the same, as in the single agent
set-up. The difference is, that the {sunny,cloudy,night}_outside beliefs are
updated by another agent in the wireless network.

7.3.2 Results

First Execution

The experiment (Figure 7.4) lasted for 765 s. The initial conditions were, that
the lights were off and the blinds down and the user preference was to brighten

7. Experimental Evaluation 37

1 !communicate.

2

3 +!communicate: sunny_outside

4 <- .broadcast(tell, sunny_outside) ;

5 .broadcast(untell, cloudy_outside) ;

6 .broadcast(untell, night_outside) ;

7 !!communicate .

8 +!communicate: cloudy_outside

9 <- .broadcast(untell, sunny_outside) ;

10 .broadcast(tell, cloudy_outside) ;

11 .broadcast(untell, night_outside) ;

12 !!communicate .

13 +!communicate: night_outside

14 <- .broadcast(untell, sunny_outside) ;

15 .broadcast(untell, cloudy_outside) ;

16 .broadcast(tell, night_outside) ;

17 !!communicate .

Listing 8: The outdoor agent senses the illuminance levels and based on the
thresholds, broadcasts the corresponding beliefs. As the outdoor agent may
start before the indoor agent, it is necessary to broadcast the beliefs regularly
through maintenance goals.

10−1

100

101

102

103

In
do

or

 Il
lu

m
in

an
ce

 [l

ux
]

indoor

indoor theshold

Goal Brighten Darken

0 169 213 528 765
Time [s]

Action
Raise Blinds Turn on Lights Turn off Lights

Lower Blinds

3 × 103

4 × 103

6 × 103

Outdoor
 Illum

inance
 [lux]

outdoor

outdoor theshold

Figure 7.4: The first experiment exposed the latency from acquiring an outdoor
belief until a corresponding action was issued.

the room. This initially triggered the action of raising the blinds. The indoor
illuminance is actually below the threshold, but the sunny condition prevents
the agent to turn on the light. After 169 s, the outdoor conditions indicate,
that it is cloudy. Since the outdoor agent has a near worst-case alignment of the
decision cycle and communication cycle, it needs 14 s, until the beliefs are sent
over the LWB. The indoor agent requires two full decision cycles to come to the

7. Experimental Evaluation 38

conclusion to turn on the lights, meaning, the breaking condition got triggered to
our disadvantage. This results in a total delay of 44 s from acquiring the belief,
until the action gets triggered. There were two cycles required, because after
acquiring the belief cloudy_outside, +!brighten was already processed, before
standard_mode_available got added to the belief base (so there was no context
matching the belief base for a plan for +!brighten). Therefore, the action gets
triggered only in the next decision cycle. At 513 s, the user preference changed to
darken. As +user_turn_off executes !!preserve_dark, the breaking condition
gets triggered before a plan for +!preserve_dark can be executed. This results
in a delay of one decision cycle, until the actions get triggered, resulting in a 15 s
delay.

Second Execution

10−1

100

101

102

103

In
do

or

 Il
lu

m
in

an
ce

 [l

ux
]

indoor

indoor theshold

Goal Brighten Darken

0 678 1233 1485
Time [s]

Action
Raise Blinds Turn on Lights Turn off Lights

Lower Blinds

1.8 × 103

1.9 × 103

2 × 103

2.1 × 103

2.2 × 103

2.3 × 103

Outdoor
 Illum

inance
 [lux]

outdoor

Figure 7.5: In the second experiment, the proactive and reactive behaviour of the
agent was revealed. The system reacted correctly based on outdoor and indoor
conditions.

The second execution of the experiment (Figure 7.5) lasted for 1485 s. The
initial conditions were the same as above (lowered blinds and turned-off lights).
As the outside conditions suggested, that it is sunny, the blinds gets raised, as
the user preference is to brighten the room. This raised the indoor illuminance
right above the threshold leading to the agent believe in bright_inside. At
675 s, the indoor illuminance fell below the threshold. 3 s later, the agent
performed the action to turn on the lights. This small delay was from the
offset of the sensing- and reasoning-task to allow different measurement times
(changing illuminances need multiple iterations to adapt gain and integration
time for the AS7262 sensor). At 1218 s, the user preference changed to darken
the room, exposing the same agent behaviour than in the first execution of the
experiment.

7. Experimental Evaluation 39

Low-Level Metrics

This subsection looks at the low-level metrics of the indoor agent. As the agent
program is the same as in the single agent application, the translation yielded
the same C++ code size. In Table 7.4 and Table 7.5, the composition of the
binary is summarized. To compare it with the single agent, the ROMEM section
correspond to the flash section and the combination of the latter three ones
correspond to the sram section.

Memory region Used Size Region Size %age Used

ROMEM: 209’988 B 2’000 KB 10.25%

RWMEM: 89’980 B 524’287 B 17.16%

TCM: 0 B 64 KB 0.00%

STACKMEM: 12’288 B 192 KB 6.25%

Table 7.4: The indoor agent occupies a smaller portion of the flash and ram,
because it does not include the BLE stack compared to the single agent. This
means, there is plenty of space for more complex agents. For the outdoor agent,
the numbers look mostly the same, as both of them have a small AgentSpeak
program.

.text .data .bss total

209’220 B 768 B 101’500 B 311’488 B

Table 7.5: This table shows the subdivision of the different memory sections of
the indoor agent.

The measurement of the energy consumption was performed by an Otii Arc
[36] and are summarized in Table 7.6. It is to note, that the reasoning part corre-
sponds to a full decision cycle including message fetching over Bolt. The energy
and execution time values thus are significantly higher. The task that consumed
the most energy, is sensing. This is also significantly higher, than in the single
agent experiment, since longer integration times are chosen. Another significant
energy consumer is the communication, which now requires almost three orders
of magnitude more energy, although they cannot be directly compared , as here,
the communication is bidirectional.

7.4 Analysis

The experiments showed, that it is possible to implement a low-power BDI agent
on an embedded device, which can perform a basic home automation task. The

7. Experimental Evaluation 40

Task Emean Estd dev tmean tstd dev n

Sensing 39.7 mJ 160.7 µJ 1113.4 ms 4.5 ms 190

Reasoning 54.8 µJ 17.5 µJ 1.609 ms 490.2 µs 115

Communication 25.9 mJ 4.0 mJ 419.9 ms 64.6 ms 115

Table 7.6: The agents in the MAS use a lot more energy for reasoning and
communication. This is due to reasoning now consisting of a full decision cycle
(may contain more than one reasoning cycle) and the communication over Bolt
(fetching new messages and in case of a transmission, putting messages onto
Bolt). Communication also requires a lot more energy because of the more
sophisticated wireless infrastructure.

agents show reactive and proactive behaviour, where it reacts on user input and
proactively adapts to the environment. Compared to the traditional tasks of
sensing and communication, reasoning takes up very little time and energy, so
the cost of adding intelligence and autonomy to a simple system is very minimal.
The two setups also showed the differences of the single and multi-agent system.
The single agent had practically no communication delay, whereas there was
a worst-case delay of 15 s in the multi-agent system. There is however the
advantage of the meshed communication in LWB, which BLE does not allow
efficiently (BLE is point-to-point, which is not directly compatible with MAS).
The computational delay could however be greatly improved, because of the
introduction of the full decision cycle (see Section 5.3). This allows to do a
”burst” of reasoning cycles directly one after the other and thus directly decide
on an action.

Chapter 8

Conclusion

Current low-power systems gain more and more computational power and can
perform increasingly complex tasks. But currently, they lack higher level in-
telligence and the ability to act autonomously. These behaviours are found in
traditional MAS, where different agents can collaboratively work towards a goal.
In this work, I demonstrated, that we can integrate important features of au-
tonomous agents from the MAS community into low-power systems. This opens
up new fields, because we can have a lot more autonomy in these highly constraint
devices, which can be deployed everywhere, as AgentSpeak is far better suited
to specify autonomous behaviour than the C programming language. I have
shown in a specific application scenario, that a single agent system with a sim-
plified wireless communication infrastructure, having a low latency distributing
actions to actuator, that BDI agents work with good performance on low-power
embedded systems. The framework is extended to allow inter-agent communica-
tion on a dedicated low-power wireless communication system, allowing to build
more sophisticated applications with complicated interactions. The communica-
tion delay is however increased, but for systems, that need fast decision making,
there exists other low-power, asynchronous communication means.

8.1 Future Work

It is clear, that the multi-agent demo application can at best be regarded as
a multiple agent system, because the true advantage of multi-agent systems is
not exposed (jointly achieve goals, competition etc.). The framework however is
implemented in such a way that allows easy feature additions. The addition of
further illocutionary forces allows then, to implement more complex multi-agent
applications.

The breaking-condition developed for the MAS framework needs further re-
finement for proper functionality in any embedded agent, as there still exists
some circumstances, where it gets triggered too soon and thus delays decision
making into the next decision cycle.

41

8. Conclusion 42

To benefit from both the powerful traditional MAS and the low-power em-
bedded MAS, it is desirable to develop a communication interface, that allows
agents from both world understand each other.

Bibliography

[1] Angelo Garofalo, Gianmarco Ottavi, Francesco Conti, Geethan
Karunaratne, Irem Boybat, Luca Benini, and Davide Rossi. A het-
erogeneous in-memory computing cluster for flexible end-to-end inference of
real-world deep neural networks. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 2022.

[2] Ali Nikoukar, Saleem Raza, Angelina Poole, Mesut Güneş, and Behnam
Dezfouli. Low-power wireless for the internet of things: Standards and
applications. IEEE Access, 6:67893–67926, 2018.

[3] Long Jin, Steven L Zhang, Sixing Xu, Hengyu Guo, Weiqing Yang, and
Zhong Lin Wang. Free-fixed rotational triboelectric nanogenerator for self-
powered real-time wheel monitoring. Advanced Materials Technologies, 6
(3):2000918, 2021.

[4] Nurettin Sezer and Muammer Koç. A comprehensive review on the state-
of-the-art of piezoelectric energy harvesting. Nano Energy, 80:105567, 2021.

[5] Tao Yang, Shengxi Zhou, Shitong Fang, Weiyang Qin, and Daniel J Inman.
Nonlinear vibration energy harvesting and vibration suppression technolo-
gies: Designs, analysis, and applications. Applied Physics Reviews, 8(3):
031317, 2021.

[6] Silvia Liberata Ullo and Ganesh Ram Sinha. Advances in smart environment
monitoring systems using iot and sensors. Sensors, 20(11):3113, 2020.

[7] Olivier Boissier, Rafael H. Bordini, Jomi Hübner, and Alessandro Ricci.
Multi-agent oriented programming: programming multi-agent systems using
JaCaMo. MIT Press, 2020.

[8] Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Program-
ming multi-agent systems in AgentSpeak using Jason. John Wiley & Sons,
2007.

[9] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Devel-
oping multi-agent systems with JADE. John Wiley & Sons, 2007.

[10] Reydson Schuenck Barros, Victor Hugo Heringer, Carlos Eduardo Pantoja,
Nilson Mori Lazarin, and Leonardo Machado de Moraes. An agent-oriented
ground vehicle’s automation using jason framework. In ICAART (2), pages
261–266, 2014.

43

BIBLIOGRAPHY 44

[11] Nikolaos Papakostas, Anthony Newell, and Abraham George. An agent-
based decision support platform for additive manufacturing applications.
Applied Sciences, 10(14):4953, 2020.

[12] Omar Bahri, Asmaa Mourhir, and Elpiniki I Papageorgiou. Integrat-
ing fuzzy cognitive maps and multi-agent systems for sustainable agricul-
ture. Euro-Mediterranean Journal for Environmental Integration, 5(1):1–10,
2020.

[13] Davide Rossi, Francesco Conti, Manuel Eggiman, Alfio Di Mauro, Giuseppe
Tagliavini, Stefan Mach, Marco Guermandi, Antonio Pullini, Igor Loi, Jie
Chen, et al. Vega: A ten-core soc for iot endnodes with dnn acceleration
and cognitive wake-up from mram-based state-retentive sleep mode. IEEE
Journal of Solid-State Circuits, 57(1):127–139, 2021.

[14] Haoyu Ren, Darko Anicic, and Thomas A Runkler. Tinyol: Tinyml with
online-learning on microcontrollers. In 2021 International Joint Conference
on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[15] Carles Gomez, Joaquim Oller, and Josep Paradells. Overview and evalua-
tion of bluetooth low energy: An emerging low-power wireless technology.
Sensors, 12(9):11734–11753, 2012.

[16] Seyed Mahdi Darroudi, Raül Caldera-Sànchez, and Carles Gomez. Blue-
tooth mesh energy consumption: A model. Sensors, 19(5):1238, 2019.

[17] Felix Sutton, Bernhard Buchli, Jan Beutel, and Lothar Thiele. Zippy: On-
demand network flooding. In Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems, pages 45–58, 2015.

[18] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele. Low-
power wireless bus. In Proceedings of the 10th ACM Conference on Embed-
ded Network Sensor Systems, pages 1–14, 2012.

[19] SRR Dhiwaakar Purusothaman, Ramesh Rajesh, Karan K Bajaj, and Vi-
neeth Vijayaraghavan. Implementation of arduino-based multi-agent sys-
tem for rural indian microgrids. In 2013 IEEE Innovative Smart Grid
Technologies-Asia (ISGT Asia), pages 1–5. IEEE, 2013.

[20] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Agilla: A mo-
bile agent middleware for self-adaptive wireless sensor networks. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 4(3):1–26,
2009.

[21] Samuel Bucheli, Daniel Kroening, Ruben Martins, and Ashutosh Natraj.
From AgentSpeak to C for safety considerations in unmanned aerial vehi-
cles. In Conference Towards Autonomous Robotic Systems, pages 69–81.
Springer, 2015.

BIBLIOGRAPHY 45

[22] S Russel and P Norvig. Chapter 2, page 34–63. Prentice Hall, 3rd edition,
1999.

[23] Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory
and practice. The knowledge engineering review, 10(2):115–152, 1995.

[24] Anand S. Rao. AgentSpeak (L): BDI agents speak out in a logical com-
putable language. In European workshop on modelling autonomous agents
in a multi-agent world, pages 42–55. Springer, 1996.

[25] Luca Rufer, Naomi Stricker, Reto Da Forno, Lothar Thiele, and Andres
Gomez. Demo abstract: DPP3e: A harvesting-based dual processor plat-
form for advanced indoor environmental sensing. In 2022 21st ACM/IEEE
International Conference on Information Processing in Sensor Networks
(IPSN), pages 495–496. IEEE, 2022.

[26] Jan Beutel, Roman Trüb, Reto Da Forno, Markus Wegmann, Tonio Gsell,
Romain Jacob, Michael Keller, Felix Sutton, and Lothar Thiele. The dual
processor platform architecture: Demo abstract. In Proceedings of the 18th
International Conference on Information Processing in Sensor Networks,
pages 335–336, 2019.

[27] Apollo3 Blue Plus MCU Datasheet. Ambiq Micro, Inc., Austin, US-TX,
February 2022. Doc. Revision: 1.1.2.

[28] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. Effi-
cient network flooding and time synchronization with glossy. In Proceedings
of the 10th ACM/IEEE International Conference on Information Processing
in Sensor Networks, pages 73–84. IEEE, 2011.

[29] Felix Sutton, Marco Zimmerling, Reto Da Forno, Roman Lim, Tonio Gsell,
Georgia Giannopoulou, Federico Ferrari, Jan Beutel, and Lothar Thiele.
Bolt: A stateful processor interconnect. In Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems, pages 267–280, 2015.

[30] Matuzalém Muller dos Santos. Programação orientada a agentes BDI em
sistemas embarcados. Master’s thesis, Universidade Federal de Santa Cata-
rina, 2022.

[31] Market leading RTOS (real time operating system) for embedded systems
with internet of things extensions, Oct 2022. URL https://www.freertos.

org/. Accessed: 2022-10-31.

[32] Apollo3 Blue, Oct 2022. URL https://ambiq.com/apollo3-blue/. Ac-
cessed: 2022-10-31.

[33] High Accuracy Ambient Light Sensor With I²C Interface. Vishay Intertech-
nology, Inc., Malvern, US-PA, April 2022. Rev. 1.6, 28-Apr-2022.

https://www.freertos.org/
https://www.freertos.org/
https://ambiq.com/apollo3-blue/

BIBLIOGRAPHY 46

[34] AS7262 Datasheet. Ams-Osram AG, Austria, March 2017. v1-01.

[35] Lukas Sigrist, Andres Gomez, Roman Lim, Stefan Lippuner, Matthias Leu-
bin, and Lothar Thiele. Rocketlogger: Mobile power logger for prototyping
iot devices: Demo abstract. In Proceedings SenSys Conference. ACM, 2016.

[36] Otii Arc - Product Specification. Qoitech AB, Sweden, 2022.

	Acknowledgements
	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Traditional Multi-Agent Systems
	3.1.1 Agents
	3.1.2 Belief-Desire-Intention
	3.1.3 AgentSpeak
	3.1.4 Illocutionary Force
	3.1.5 Proactivness vs. Reactiveness
	3.1.6 Minimum Requirements for a Platform Running Low-Power Agents

	3.2 Platform
	3.2.1 DPP3e
	3.2.2 Low-Power Wireless Bus
	3.2.3 Processor Interconnect

	4 Low-Power Single Agent System
	4.1 Translation Engine
	4.2 BDI Runtime
	4.2.1 Reasoning Frequency in Low-Power Environments

	5 Cooperative Multi-Agent System
	5.1 New Features on the Agent Level
	5.1.1 Reasoning Cycle

	5.2 Derive a Common Language Between Agents
	5.3 Extension to a Full Decision Cycle

	6 Implementation
	6.1 Single Agent Implementation
	6.2 Multi-Agent Implementation
	6.2.1 Full Decision Cycle
	6.2.2 Communication
	6.2.3 Embedded BDI Framework
	6.2.4 Flexibility of Extending the Framework

	7 Experimental Evaluation
	7.1 Case Study: Controlling Room Illuminance with Intelligent Agents
	7.1.1 Goal 1: Preserve the Room Illuminance Efficiently
	7.1.2 Goal 2: Update Environment Based on User Preference

	7.2 Single-Agent Application
	7.2.1 Experimental Set-Up
	7.2.2 Results

	7.3 Multi-Agent Application
	7.3.1 Experimental Set-Up
	7.3.2 Results

	7.4 Analysis

	8 Conclusion
	8.1 Future Work

